Evaluation of hydrogen induced cracking behavior of API X70 pipeline steel at different heat treatments

The microstructure of API X70 pipeline steel was modified by applying different heat treatments including water-quenched, water-sprayed, and water-quenched and tempered. Hydrogen induced cracking behavior was investigated on the X70 steel at these heat treatments. Two test methods, Japanese Industri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2014-04, Vol.39 (11), p.6076-6088
Hauptverfasser: Mohtadi-Bonab, M.A., Szpunar, J.A., Collins, L., Stankievech, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The microstructure of API X70 pipeline steel was modified by applying different heat treatments including water-quenched, water-sprayed, and water-quenched and tempered. Hydrogen induced cracking behavior was investigated on the X70 steel at these heat treatments. Two test methods, Japanese Industrial Standard (JIS) and vacuum thermal desorption, were used to release hydrogen from reversible and irreversible traps. The experimental results showed that the highest amount of discharged hydrogen in reversible and irreversible traps was related to the water-sprayed and as-received steels. The hydrogen discharged content from reversible traps reached to a saturation level after 8 h of charging, and it decreased considerably when the steels were charged for 15 h and 24 h. Hydrogen discharge tests proved that a higher amount of hydrogen inside steel is not a reliable measure for HIC evaluation. HIC test results also document that the water-quenched steel with agglomerated martensite particles had the highest susceptibility to HIC. Texture study results show that a low fraction of important texture components, such as {023}, {321} and {332}, cannot be reliably used to evaluate HIC. As a result, a novel method of manufacturing of pipeline steels with an optimized texture is required to increase safety and reliability of transportation of sour gas and oil. •Hydrogen charging was used to evaluate HIC on X70 steel at different heat treatments.•Hydrogen charging showed the highest susceptibility of quenched steel.•Hydrogen discharged content from reversible traps was highest in sprayed steel.•Hydrogen discharged content from irreversible traps was highest in as-received steel.•Density of total and irreversible traps was highest in quenched and sprayed steels.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2014.01.138