Phase transition and elasticity of enstatite under pressure from experiments and first-principles studies

•MgSiO3 enstatite (Pbca) is investigated by X-ray diffraction, ultrasonic measurements, and first-principles calculations.•Pbca-P21/c transition results in a density increase of 1.4–1.5% with velocity change less than 1.5%.•Elastic constants of Pbca, P21/c, C2/c, P21ca and Pbca-II at high pressures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Earth Planet. In 2014-03, Vol.228 (3, 2014), p.63-74
Hauptverfasser: Li, Baosheng, Kung, Jennifer, Liu, Wei, Liebermann, Robert C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•MgSiO3 enstatite (Pbca) is investigated by X-ray diffraction, ultrasonic measurements, and first-principles calculations.•Pbca-P21/c transition results in a density increase of 1.4–1.5% with velocity change less than 1.5%.•Elastic constants of Pbca, P21/c, C2/c, P21ca and Pbca-II at high pressures are obtained from first-principles calculations.•Elastic constant C55 of Pbca (also Pbca-II) softens and causes sound velocity anomalies at high pressure.•Pbca to C2/c transition results in velocity jumps of 2.8-4.5%, a possible contributor to X discontinuity. We have investigated the thermodynamic stability, crystal structure, elastic constants, and sound velocities of MgSiO3-enstatite using data from X-ray diffraction and ultrasonic measurements up to 16.8GPa and first-principles calculations up to 30GPa. The calculated enthalpies provide theoretical support for the phase transition from Pbca to P21/c between 9 and 14GPa previously observed in natural orthoensatite and MgSiO3 enstatite. A density increase of 1.4–1.5% for the Pbca→P21/c transition is obtained from both first-principles and experimental studies. Elastic constants of Pbca, P21/c, C2/c, P21ca and Pbca-II are all calculated, and a softening in the shear constant C55 is predicted for Pbca and Pbca-II phases. C55 of Pbca is found to be closely correlated with the A-site SiO4 tetrahedra chain angle while C44 and C66 are correlated with the B-site chain angle. Pbca, P21/c and C2/c all exhibit similar volumetric compressibilities at all pressures. The calculated velocities of the P21/c phase at 12GPa are equal to those of Pbca for P and 1.3% higher for S waves. The experimentally observed P and S wave velocity anomalies can be qualitatively described by the transformation from Pbca to P21/c; however, the magnitudes of the velocity decreases between 10 and 14GPa remain to be verified by future single crystal data or polycrystalline measurements at high pressures. The predicted velocity jumps of 2.8% and 4.5% for P and S waves, respectively, between Pbca and C2/c in the pressure range of 5–12GPa are in excellent agreement with the values of ∼3(1)% and ∼5(1)% obtained from the directly measured data, thereby making it a plausible candidate for the seismic X-discontinuity at depths of 250–300km in the Earth’s upper mantle.
ISSN:0031-9201
1872-7395
DOI:10.1016/j.pepi.2013.11.009