Object–object interaction affordance learning
This paper presents a novel object–object affordance learning approach that enables intelligent robots to learn the interactive functionalities of objects from human demonstrations in everyday environments. Instead of considering a single object, we model the interactive motions between paired objec...
Gespeichert in:
Veröffentlicht in: | Robotics and autonomous systems 2014-04, Vol.62 (4), p.487-496 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel object–object affordance learning approach that enables intelligent robots to learn the interactive functionalities of objects from human demonstrations in everyday environments. Instead of considering a single object, we model the interactive motions between paired objects in a human–object–object way. The innate interaction-affordance knowledge of the paired objects are learned from a labeled training dataset that contains a set of relative motions of the paired objects, human actions, and object labels. The learned knowledge is represented with a Bayesian Network, and the network can be used to improve the recognition reliability of both objects and human actions and to generate proper manipulation motion for a robot if a pair of objects is recognized. This paper also presents an image-based visual servoing approach that uses the learned motion features of the affordance in interaction as the control goals to control a robot to perform manipulation tasks. |
---|---|
ISSN: | 0921-8890 1872-793X |
DOI: | 10.1016/j.robot.2013.12.005 |