Application-Focused Energy-Fidelity Scalability for Wireless Motion-Based Health Assessment

Energy-fidelity trade-offs are central to the performance of many technologies, but they are essential in wireless body area sensor networks (BASNs) due to severe energy and processing constraints and the critical nature of certain healthcare applications. On-node signal processing and compression t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on embedded computing systems 2012-08, Vol.11 (S2), p.1-21
Hauptverfasser: Hanson, Mark A., Powell, Harry C., Barth, Adam T., Lach, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Energy-fidelity trade-offs are central to the performance of many technologies, but they are essential in wireless body area sensor networks (BASNs) due to severe energy and processing constraints and the critical nature of certain healthcare applications. On-node signal processing and compression techniques can save energy by greatly reducing the amount of data transmitted over the wireless channel, but lossy techniques, capable of high compression ratios, can incur a reduction in application fidelity. In order to maximize system performance, these trade-offs must be considered at runtime due to the dynamic nature of BASN applications, including sensed data, operating environments, user actuation, etc. BASNs therefore require energy-fidelity scalability, so automated and user-initiated trade-offs can be made dynamically. This article presents a data rate scalability framework within a motion-based health application context which demonstrates the design of efficient and efficacious wireless health systems.
ISSN:1539-9087
1558-3465
DOI:10.1145/2331147.2331160