Space environmental testing of flexible coverglass alternatives based on siloxanes
With the development of thin-film, high-efficient III–V solar cells using the epitaxial lift-off technique, flexible solar panels for space applications can be designed. Besides new deployment options, this also reduces the mass and thus launch costs of a satellite. One requirement for such a flexib...
Gespeichert in:
Veröffentlicht in: | Polymer degradation and stability 2013-12, Vol.98 (12), p.2503-2511 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the development of thin-film, high-efficient III–V solar cells using the epitaxial lift-off technique, flexible solar panels for space applications can be designed. Besides new deployment options, this also reduces the mass and thus launch costs of a satellite. One requirement for such a flexible panel configuration is the replacement of the brittle coverglass, which shields the solar cells from the harsh space environment, by a flexible alternative. In this work we have tested several compositions of a polysiloxane candidate material for a flexible shielding layer by exposing them to high energy UV and electron radiation at elevated temperatures. It was found that irradiation by electrons with a fluence corresponding to 15 years in space produces little degradation. UV radiation, on the other hand, has a more pronounced impact on the material properties, causing a discolouration of the transparent material and for some compositions even cracking of the samples. |
---|---|
ISSN: | 0141-3910 1873-2321 |
DOI: | 10.1016/j.polymdegradstab.2013.09.008 |