Preparation and characterization of cyclodextrin inclusion complex of naringenin and critical comparison with phospholipid complexation for improving solubility and dissolution
Naringenin, a flavonoid specific to citrus fruits shows a variety of therapeutic effects like anti-inflammatory, anticarcinogenic, and antitumour effects. But it is associated with some limitations like poor water solubility, poor dissolution, lower half-life, and rapid clearance from the body. With...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2014-03, Vol.115 (3), p.2471-2478 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Naringenin, a flavonoid specific to citrus fruits shows a variety of therapeutic effects like anti-inflammatory, anticarcinogenic, and antitumour effects. But it is associated with some limitations like poor water solubility, poor dissolution, lower half-life, and rapid clearance from the body. With the aim of improving amorphous nature, water solubility, and dissolution profile of naringenin and its complexes were prepared with β-cyclodextrin in three different molar ratios (1:1, 1:2, and 1:3) by solvent evaporation method. These complexes were characterized for solubility, drug content, chemical interaction (using FTIR), phase transition behavior (using DSC), crystallinity (using XRPD), surface morphology (using SEM), and in vitro dissolution study. The results were also critically compared with the results obtained from naringenin-phospholipid complexes (from author’s previous study). The prepared complexes showed high drug content (ranging from 69.53 to 84.38 %) and about two fold improvement in water solubility (from 41.81 to 76.31 μg mL
−1
in the complex with 1:3 ratio). SEM of the complexes showed irregular and rough surface morphology. FTIR, DSC, and XRPD data confirmed the formation of the complex. Unlike the free naringenin which showed a total of only 48.78 % drug release at the end of 60 min, the complex showed 98.0–100 % in dissolution study. Thus it was concluded that the β-cyclodextrin of naringenin may be of potential use for improving bioavailability of poorly soluble phytoconstituents/herbal drugs. On critical comparison with the phospholipid complex of naringenin both the techniques were found almost equally effective in improving the solubility and the dissolution performance of naringenin in the complex form. |
---|---|
ISSN: | 1388-6150 1588-2926 1572-8943 |
DOI: | 10.1007/s10973-013-3463-y |