Generalized measures for fault tolerance of star networks
This article shows that, for any integers n and k with 0≤k≤n−2, at least (k+1)!(n−k−1) vertices or edges have to be removed from an n‐dimensional star graph to make it disconnected with no vertices of degree less than k. The result gives an affirmative answer to the conjecture proposed by Wan and Zh...
Gespeichert in:
Veröffentlicht in: | Networks 2014-05, Vol.63 (3), p.225-230 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article shows that, for any integers n and k with 0≤k≤n−2, at least (k+1)!(n−k−1) vertices or edges have to be removed from an n‐dimensional star graph to make it disconnected with no vertices of degree less than k. The result gives an affirmative answer to the conjecture proposed by Wan and Zhang (Appl Math Lett 22 (2009), 264‐267).Copyright © 2014 Wiley Periodicals, Inc. NETWORKS, Vol. 63(3), 225–230 2014 |
---|---|
ISSN: | 0028-3045 1097-0037 |
DOI: | 10.1002/net.21539 |