A new semilocal convergence theorem for the Weierstrass method for finding zeros of a polynomial simultaneously

In this paper we study the convergence of the famous Weierstrass method for simultaneous approximation of polynomial zeros over a complete normed field. We present a new semilocal convergence theorem for the Weierstrass method under a new type of initial conditions. Our result is obtained by combini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Complexity 2014-06, Vol.30 (3), p.366-380
Hauptverfasser: Proinov, Petko D., Petkova, Milena D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 3
container_start_page 366
container_title Journal of Complexity
container_volume 30
creator Proinov, Petko D.
Petkova, Milena D.
description In this paper we study the convergence of the famous Weierstrass method for simultaneous approximation of polynomial zeros over a complete normed field. We present a new semilocal convergence theorem for the Weierstrass method under a new type of initial conditions. Our result is obtained by combining ideas of Weierstrass (1891) and Proinov (2010). A priori and a posteriori error estimates are also provided under the new initial conditions.
doi_str_mv 10.1016/j.jco.2013.11.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531017507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0885064X1300099X</els_id><sourcerecordid>1531017507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-4698f1592a95b7fd0a4a82950b0ebf7edf044fe89a1b463be73dbb4220e278d13</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7j5yCVhN--IU1XxkipxAcHNcpx16yqJi50WlV-PSzlz2pV2ZjT7MXaNECNgcbuO18rGCWAaI8YAyQmbINQQJSVUp2wCVZVHUGQf5-zC-zUAYl7ghNkZH-iLe-pNZ5XsuLLDjtySBkV8XJF11HNt3WHn72TI-dFJ73lP48q2vydthtYMS_5NznpuNZd8Y7v9YHsTAr3pt90oB7Jb3-0v2ZmWnaervzllbw_3r_OnaPHy-DyfLSKVlukYZUVdaczrRNZ5U-oWZCarpM6hAWp0Sa2GLNNU1RKbrEgbKtO2abIkAUrKqsV0ym6OuRtnP7fkR9Ebr6jrjkUE5mngVuZQBikepSrU94602DjTS7cXCOIAV6xFgCsOcAWiCHCD5-7oofDDLlARXpkDs9Y4UqNorfnH_QNnF4RX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531017507</pqid></control><display><type>article</type><title>A new semilocal convergence theorem for the Weierstrass method for finding zeros of a polynomial simultaneously</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Proinov, Petko D. ; Petkova, Milena D.</creator><creatorcontrib>Proinov, Petko D. ; Petkova, Milena D.</creatorcontrib><description>In this paper we study the convergence of the famous Weierstrass method for simultaneous approximation of polynomial zeros over a complete normed field. We present a new semilocal convergence theorem for the Weierstrass method under a new type of initial conditions. Our result is obtained by combining ideas of Weierstrass (1891) and Proinov (2010). A priori and a posteriori error estimates are also provided under the new initial conditions.</description><identifier>ISSN: 0885-064X</identifier><identifier>EISSN: 1090-2708</identifier><identifier>DOI: 10.1016/j.jco.2013.11.002</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Approximation ; Convergence ; Error estimates ; Errors ; Estimates ; Initial conditions ; Mathematical analysis ; Normed fields ; Polynomial zeros ; Polynomials ; Semilocal convergence ; Simultaneous methods ; Theorems ; Weierstrass method</subject><ispartof>Journal of Complexity, 2014-06, Vol.30 (3), p.366-380</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-4698f1592a95b7fd0a4a82950b0ebf7edf044fe89a1b463be73dbb4220e278d13</citedby><cites>FETCH-LOGICAL-c373t-4698f1592a95b7fd0a4a82950b0ebf7edf044fe89a1b463be73dbb4220e278d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0885064X1300099X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Proinov, Petko D.</creatorcontrib><creatorcontrib>Petkova, Milena D.</creatorcontrib><title>A new semilocal convergence theorem for the Weierstrass method for finding zeros of a polynomial simultaneously</title><title>Journal of Complexity</title><description>In this paper we study the convergence of the famous Weierstrass method for simultaneous approximation of polynomial zeros over a complete normed field. We present a new semilocal convergence theorem for the Weierstrass method under a new type of initial conditions. Our result is obtained by combining ideas of Weierstrass (1891) and Proinov (2010). A priori and a posteriori error estimates are also provided under the new initial conditions.</description><subject>Approximation</subject><subject>Convergence</subject><subject>Error estimates</subject><subject>Errors</subject><subject>Estimates</subject><subject>Initial conditions</subject><subject>Mathematical analysis</subject><subject>Normed fields</subject><subject>Polynomial zeros</subject><subject>Polynomials</subject><subject>Semilocal convergence</subject><subject>Simultaneous methods</subject><subject>Theorems</subject><subject>Weierstrass method</subject><issn>0885-064X</issn><issn>1090-2708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7j5yCVhN--IU1XxkipxAcHNcpx16yqJi50WlV-PSzlz2pV2ZjT7MXaNECNgcbuO18rGCWAaI8YAyQmbINQQJSVUp2wCVZVHUGQf5-zC-zUAYl7ghNkZH-iLe-pNZ5XsuLLDjtySBkV8XJF11HNt3WHn72TI-dFJ73lP48q2vydthtYMS_5NznpuNZd8Y7v9YHsTAr3pt90oB7Jb3-0v2ZmWnaervzllbw_3r_OnaPHy-DyfLSKVlukYZUVdaczrRNZ5U-oWZCarpM6hAWp0Sa2GLNNU1RKbrEgbKtO2abIkAUrKqsV0ym6OuRtnP7fkR9Ebr6jrjkUE5mngVuZQBikepSrU94602DjTS7cXCOIAV6xFgCsOcAWiCHCD5-7oofDDLlARXpkDs9Y4UqNorfnH_QNnF4RX</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Proinov, Petko D.</creator><creator>Petkova, Milena D.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140601</creationdate><title>A new semilocal convergence theorem for the Weierstrass method for finding zeros of a polynomial simultaneously</title><author>Proinov, Petko D. ; Petkova, Milena D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-4698f1592a95b7fd0a4a82950b0ebf7edf044fe89a1b463be73dbb4220e278d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Convergence</topic><topic>Error estimates</topic><topic>Errors</topic><topic>Estimates</topic><topic>Initial conditions</topic><topic>Mathematical analysis</topic><topic>Normed fields</topic><topic>Polynomial zeros</topic><topic>Polynomials</topic><topic>Semilocal convergence</topic><topic>Simultaneous methods</topic><topic>Theorems</topic><topic>Weierstrass method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Proinov, Petko D.</creatorcontrib><creatorcontrib>Petkova, Milena D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of Complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Proinov, Petko D.</au><au>Petkova, Milena D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new semilocal convergence theorem for the Weierstrass method for finding zeros of a polynomial simultaneously</atitle><jtitle>Journal of Complexity</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>30</volume><issue>3</issue><spage>366</spage><epage>380</epage><pages>366-380</pages><issn>0885-064X</issn><eissn>1090-2708</eissn><abstract>In this paper we study the convergence of the famous Weierstrass method for simultaneous approximation of polynomial zeros over a complete normed field. We present a new semilocal convergence theorem for the Weierstrass method under a new type of initial conditions. Our result is obtained by combining ideas of Weierstrass (1891) and Proinov (2010). A priori and a posteriori error estimates are also provided under the new initial conditions.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jco.2013.11.002</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-064X
ispartof Journal of Complexity, 2014-06, Vol.30 (3), p.366-380
issn 0885-064X
1090-2708
language eng
recordid cdi_proquest_miscellaneous_1531017507
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Approximation
Convergence
Error estimates
Errors
Estimates
Initial conditions
Mathematical analysis
Normed fields
Polynomial zeros
Polynomials
Semilocal convergence
Simultaneous methods
Theorems
Weierstrass method
title A new semilocal convergence theorem for the Weierstrass method for finding zeros of a polynomial simultaneously
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20semilocal%20convergence%20theorem%20for%20the%20Weierstrass%20method%20for%20finding%20zeros%20of%20a%20polynomial%20simultaneously&rft.jtitle=Journal%20of%20Complexity&rft.au=Proinov,%20Petko%20D.&rft.date=2014-06-01&rft.volume=30&rft.issue=3&rft.spage=366&rft.epage=380&rft.pages=366-380&rft.issn=0885-064X&rft.eissn=1090-2708&rft_id=info:doi/10.1016/j.jco.2013.11.002&rft_dat=%3Cproquest_cross%3E1531017507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531017507&rft_id=info:pmid/&rft_els_id=S0885064X1300099X&rfr_iscdi=true