A new semilocal convergence theorem for the Weierstrass method for finding zeros of a polynomial simultaneously
In this paper we study the convergence of the famous Weierstrass method for simultaneous approximation of polynomial zeros over a complete normed field. We present a new semilocal convergence theorem for the Weierstrass method under a new type of initial conditions. Our result is obtained by combini...
Gespeichert in:
Veröffentlicht in: | Journal of Complexity 2014-06, Vol.30 (3), p.366-380 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the convergence of the famous Weierstrass method for simultaneous approximation of polynomial zeros over a complete normed field. We present a new semilocal convergence theorem for the Weierstrass method under a new type of initial conditions. Our result is obtained by combining ideas of Weierstrass (1891) and Proinov (2010). A priori and a posteriori error estimates are also provided under the new initial conditions. |
---|---|
ISSN: | 0885-064X 1090-2708 |
DOI: | 10.1016/j.jco.2013.11.002 |