Double precision rational approximation algorithm for the inverse standard normal second order loss function

We present a double precision algorithm based upon rational approximations for the inverse standard normal second order loss function. This function is used frequently in inventory management. No direct approximation or closed formulation exists for the inverse standard normal second order loss func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-04, Vol.232, p.247-253
Hauptverfasser: De Schrijver, Steven K., Aghezzaf, El-Houssaine, Vanmaele, Hendrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a double precision algorithm based upon rational approximations for the inverse standard normal second order loss function. This function is used frequently in inventory management. No direct approximation or closed formulation exists for the inverse standard normal second order loss function. Calculations are currently based on root-finding methods and intermediate computations of the cumulative normal distribution or tabulations. Results then depend on the accuracy and valid range of that underlying function. We deal with these issues and present a direct, double precision accurate algorithm valid in the full range of double precision floating point numbers.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2013.12.192