Proposal of simple and novel method of capacity fading analysis using pseudo-reference electrode in lithium ion cells: Application to solvent-free lithium ion polymer batteries

We propose a simple procedure for introducing a pseudo-reference electrode (PRE) to lithium ion batteries using isometric lithium metal placed between the cathode and anode, and we successfully obtained the cathode and anode voltage profiles, individual interfacial impedances, and the misalignment o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2014-02, Vol.247, p.1026-1032
Hauptverfasser: SHONO, Kumi, KOBAYASHI, Takeshi, TABUCHI, Masato, OHNO, Yasutaka, MIYASHIRO, Hajime, KOBAYASHI, Yo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a simple procedure for introducing a pseudo-reference electrode (PRE) to lithium ion batteries using isometric lithium metal placed between the cathode and anode, and we successfully obtained the cathode and anode voltage profiles, individual interfacial impedances, and the misalignment of the operation range between the cathode and anode after cycle operation. The proposed procedure is applicable to lithium ion battery systems using a solid electrolyte to prepare two cells with a lithium counter electrode. We determined the capacity decrease of a solvent-free lithium ion polymer battery consisting of a LiNi1/3Mn1/3Co1/3O2 (NMC), a polyether-based solid polymer electrolyte (SPE), and a graphite (Gr) with the proposed PRE over 1000 cycles. The capacity retention of the [Gr|SPE|NMC] cell reached 50% at the 1000th cycle upon the optimization of cell preparation, and we found that the main factor of the capacity decrease was the continuous irreversible loss of active lithium at the graphite anode, not the oxidation of the SPE. Our findings suggest that we should reconsider combining a polyether-based SPE with a conventionally used 4 V class cathode and a graphite anode to develop an innovative, safe, and low-cost battery for the expected large lithium ion battery systems for stationary use.
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2013.06.071