Event-triggered maximum likelihood state estimation
The event-triggered state estimation problem for linear time-invariant systems is considered in the framework of Maximum Likelihood (ML) estimation in this paper. We show that the optimal estimate is parameterized by a special time-varying Riccati equation, and the computational complexity increases...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2014-01, Vol.50 (1), p.247-254 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The event-triggered state estimation problem for linear time-invariant systems is considered in the framework of Maximum Likelihood (ML) estimation in this paper. We show that the optimal estimate is parameterized by a special time-varying Riccati equation, and the computational complexity increases exponentially with respect to the time horizon. For ease in implementation, a one-step event-based ML estimation problem is further formulated and solved, and the solution behaves like a Kalman filter with intermittent observations. For the one-step problem, the calculation of upper and lower bounds of the communication rates from the process side is also briefly analyzed. An application example to sensorless event-based estimation of a DC motor system is presented and the benefits of the obtained one-step event-based estimator are demonstrated by comparative simulations. |
---|---|
ISSN: | 0005-1098 1873-2836 |
DOI: | 10.1016/j.automatica.2013.10.005 |