Numerical investigation of the active role of the actin cytoskeleton in the compression resistance of cells

Numerous in-vitro studies have established that cells react to their physical environment and to applied mechanical loading. However, the mechanisms underlying such phenomena are poorly understood. Previous modelling of cell compression considered the cell as a passive homogenous material, requiring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2012-10, Vol.14, p.143-157
Hauptverfasser: Ronan, William, Deshpande, Vikram S., McMeeking, Robert M., McGarry, J. Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerous in-vitro studies have established that cells react to their physical environment and to applied mechanical loading. However, the mechanisms underlying such phenomena are poorly understood. Previous modelling of cell compression considered the cell as a passive homogenous material, requiring an artificial increase in the stiffness of spread cells to replicate experimentally measured forces. In this study, we implement a fully 3D active constitutive formulation that predicts the distribution, remodelling, and contractile behaviour of the cytoskeleton. Simulations reveal that polarised and axisymmetric spread cells contain stress fibres which form dominant bundles that are stretched during compression. These dominant fibres exert tension; causing an increase in computed compression forces compared to round cells. In contrast, fewer stress fibres are computed for round cells and a lower resistance to compression is predicted. The effect of different levels of cellular contractility associated with different cell phenotypes is also investigated. Highly contractile cells form more dominant circumferential stress fibres and hence provide greater resistance to compression. Computed predictions correlate strongly with published experimentally observed trends of compression resistance as a function of cellular contractility and offer an insight into the link between cell geometry, stress fibre distribution and contractility, and cell deformability. Importantly, it is possible to capture the behaviour of both round and spread cells using a given, unchanged set of material parameters for each cell type. Finally, it is demonstrated that stress distributions in the cell cytoplasm and nucleus computed using the active formulation differ significantly from those computed using passive material models. [Display omitted] ► 3D finite element implementation of active stress fibre constitutive formulation. ► Stress fibre growth, remodelling and contractility predicted for round and spread cells. ► Dominant fibres are predicted parallel to the long axis of polarised spread cells. ► Simulated compression of contractile cells agrees with experimental data. ► Stress fibres in spread cells increase compression resistance.
ISSN:1751-6161
1878-0180
DOI:10.1016/j.jmbbm.2012.05.016