Microencapsulation of bisphenol-A bis (diphenyl phosphate) and influence of particle loading on thermal and fire properties of polypropylene and polyethylene terephtalate

Microencapsulated flame retardant, bisphenol-A bis (diphenyl phosphate) (BDP), with a silane shell was prepared by sol–gel process with the goal of incorporating them in polymeric matrices by melt blending to improve the flame retardancy of isotactic polypropylene (iPP) and polyethylene terephtalate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer degradation and stability 2013-12, Vol.98 (12), p.2663-2671
Hauptverfasser: Salaün, F., Creach, G., Rault, F., Giraud, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microencapsulated flame retardant, bisphenol-A bis (diphenyl phosphate) (BDP), with a silane shell was prepared by sol–gel process with the goal of incorporating them in polymeric matrices by melt blending to improve the flame retardancy of isotactic polypropylene (iPP) and polyethylene terephtalate (PET). The influence of the loading content on thermal transitions has been studied by differential scanning calorimetry (DSC), the thermal stability of the polymer/microcapsules composites has been assessed by thermogravimetric analysis (TGA) and cone calorimetry has been used to study the fire reaction. It was noticed that the microcapsules have a limited influence on the thermal transitions of iPP matrix, but a decrease of the melting and glass transition temperatures was detected for the PET microcomposites. TGA results showed that the addition of microcapsules could improve char formation of the PET systems both in nitrogen and in air atmospheres, whereas only a small improvement of the thermal stability was detected in oxidative atmosphere for the iPP samples. Furthermore, cone calorimeter experiments show that the incorporation of microcapsules in the iPP gives almost no improvement in the iPP fire reaction. However, the microcapsules act as flame retardant in PET reducing the heat release rate during the combustion and the total heat evolved. Therefore, microcapsules can act as a char promoter agent to enhance the fire resistance in the case of PET.
ISSN:0141-3910
1873-2321
DOI:10.1016/j.polymdegradstab.2013.09.030