Recognizing vertex intersection graphs of paths on bounded degree trees
An (h,s,t)-representation of a graph G consists of a collection of subtrees of a tree T, where each subtree corresponds to a vertex of G such that (i) the maximum degree of T is at most h, (ii) every subtree has maximum degree at most s, (iii) there is an edge between two vertices in the graph G if...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2014-01, Vol.162, p.70-77 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An (h,s,t)-representation of a graph G consists of a collection of subtrees of a tree T, where each subtree corresponds to a vertex of G such that (i) the maximum degree of T is at most h, (ii) every subtree has maximum degree at most s, (iii) there is an edge between two vertices in the graph G if and only if the corresponding subtrees have at least t vertices in common in T. The class of graphs that has an (h,s,t)-representation is denoted by [h,s,t].
An undirected graph G is called a VPT graph if it is the vertex intersection graph of a family of paths in a tree. Thus, [h,2,1] graphs are the VPT graphs that can be represented in a tree with maximum degree at most h. In this paper we characterize [h,2,1] graphs using chromatic number. We show that the problem of deciding whether a given VPT graph belongs to [h,2,1] is NP-complete, while the problem of deciding whether the graph belongs to [h,2,1]−[h−1,2,1] is NP-hard. Both problems remain hard even when restricted to VPT∩Split. Additionally, we present a non-trivial subclass of VPT∩Split in which these problems are polynomial time solvable. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2013.08.004 |