Efficient melt stabilization of polyethylene with quercetin, a flavonoid type natural antioxidant
The potential use of quercetin, a flavonoid type natural antioxidant, as a stabilizer in polyethylene was explored in this work. Its efficiency was compared to that of Irganox 1010, a hindered phenolic antioxidant used routinely in industrial practice, both in the presence and the absence of a phosp...
Gespeichert in:
Veröffentlicht in: | Polymer degradation and stability 2014-04, Vol.102, p.41-48 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The potential use of quercetin, a flavonoid type natural antioxidant, as a stabilizer in polyethylene was explored in this work. Its efficiency was compared to that of Irganox 1010, a hindered phenolic antioxidant used routinely in industrial practice, both in the presence and the absence of a phosphorous secondary stabilizer. The study was carried out with a Phillips type polyethylene and the efficiency of the additive packages was checked by various methods on samples produced by multiple extrusions. Quercetin content changed from 0 to 1000 ppm in 10 steps. The results showed that quercetin is a very efficient antioxidant. It prevents the formation of long chain branches already at a concentration as small as 50 ppm and its dosage at 250 ppm renders the polymer sufficient long term residual stability. The efficiency of quercetin is considerably better than that of Irganox 1010, the hindered phenolic antioxidant used as reference stabilizer. The difference in efficiency might be explained with the dissimilar number of active –OH groups on the two molecules, but the stabilization mechanism of quercetin may be also different from that of I1010. Quercetin interacts with the phosphonite secondary stabilizer used, which improves dispersion and increases efficiency. Besides its advantages, quercetin has also some drawbacks (very high melting temperature, poor solubility in polyethylene and strong yellow color), which must be overcome before the substance can be used in practice. |
---|---|
ISSN: | 0141-3910 1873-2321 |
DOI: | 10.1016/j.polymdegradstab.2014.02.010 |