Uncertainty principles for hypercomplex signals in the linear canonical transform domains

Linear canonical transforms (LCTs) are a family of integral transforms with wide application in optical, acoustical, electromagnetic, and other wave propagation problems. The Fourier and fractional Fourier transforms are special cases of LCTs. In this paper, we extend the uncertainty principle for h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2014-02, Vol.95, p.67-75
Hauptverfasser: Yang, Yan, Ian Kou, Kit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Linear canonical transforms (LCTs) are a family of integral transforms with wide application in optical, acoustical, electromagnetic, and other wave propagation problems. The Fourier and fractional Fourier transforms are special cases of LCTs. In this paper, we extend the uncertainty principle for hypercomplex signals in the linear canonical transform domains, giving the tighter lower bound on the product of the effective widths of complex paravector- (multivector-)valued signals in the time and frequency domains. It is seen that this lower bound can be achieved by a Gaussian signal. An example is given to verify the result.
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2013.08.008