Measurement of nanometer electron beam sizes with laser interference using Shintake Monitor
The Shintake Monitor is an essential beam tuning device installed at the interaction point (IP) of ATF2 [1], the final focus test beam line of the Accelerator Test Facility (ATF) to measure its nanometer order vertical e− beam sizes (σy⁎). The e− beam collides with a target of laser interference fri...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2014-03, Vol.740, p.131-137 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 137 |
---|---|
container_issue | |
container_start_page | 131 |
container_title | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment |
container_volume | 740 |
creator | Yan, Jacqueline Yamaguchi, Yohei Kamiya, Yoshio Komamiya, Sachio Oroku, Masahiro Okugi, Toshiyuki Terunuma, Nobuhiro Kubo, Kiyoshi Tauchi, Toshiaki Urakawa, Junji |
description | The Shintake Monitor is an essential beam tuning device installed at the interaction point (IP) of ATF2 [1], the final focus test beam line of the Accelerator Test Facility (ATF) to measure its nanometer order vertical e− beam sizes (σy⁎). The e− beam collides with a target of laser interference fringes, and σy⁎ is derived from the modulation depth of the resulting Compton signal photons measured by a downstream photon detector. By switching between several laser crossing angle modes, it is designed to accommodate a wide range of σy⁎ from 20nm to a few micrometers with better than 10% accuracy. Owing to this ingenious technique, Shintake Monitor11The Shintake Monitor, invented by Dr. T. Shintake, had first been put into practical usage at the FFTB experiment at SLAC [4].[2,3] is the only existing device capable of measuring σy⁎ |
doi_str_mv | 10.1016/j.nima.2013.11.041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530993446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900213015805</els_id><sourcerecordid>1530993446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-5d6a414e24eb4db2cea6c062161252c85d76f9bf1d3e9a65aaa46975e65f27e3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5g8siT4K04isaCKL6kVA90YLMe5UJfELnYKgl-PozJzy0l3z3vSPQhdUpJTQuX1Nnd20DkjlOeU5kTQIzSjVcmyuijlMZolqMpqQtgpOotxS1LVZTVDryvQcR9gADdi32GnnR9ghIChBzMG73ADesDR_kDEX3bc4F7HtLYuQR0EcAbwPlr3hl82aajfAa-8s6MP5-ik032Ei78-R-v7u_XiMVs-PzwtbpeZ4ZyPWdFKLagAJqARbcMMaGmIZFRSVjBTFW0pu7rpaMuh1rLQWgtZlwXIomMl8Dm6OpzdBf-xhziqwUYDfa8d-H1UtOCkrrkQMqHsgJrgYwzQqV1I3sK3okRNItVWTSLVJFJRqpLIFLo5hCD98GkhqGjs9HZrQ1KkWm__i_8CE_F91A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530993446</pqid></control><display><type>article</type><title>Measurement of nanometer electron beam sizes with laser interference using Shintake Monitor</title><source>Elsevier ScienceDirect Journals</source><creator>Yan, Jacqueline ; Yamaguchi, Yohei ; Kamiya, Yoshio ; Komamiya, Sachio ; Oroku, Masahiro ; Okugi, Toshiyuki ; Terunuma, Nobuhiro ; Kubo, Kiyoshi ; Tauchi, Toshiaki ; Urakawa, Junji</creator><creatorcontrib>Yan, Jacqueline ; Yamaguchi, Yohei ; Kamiya, Yoshio ; Komamiya, Sachio ; Oroku, Masahiro ; Okugi, Toshiyuki ; Terunuma, Nobuhiro ; Kubo, Kiyoshi ; Tauchi, Toshiaki ; Urakawa, Junji</creatorcontrib><description>The Shintake Monitor is an essential beam tuning device installed at the interaction point (IP) of ATF2 [1], the final focus test beam line of the Accelerator Test Facility (ATF) to measure its nanometer order vertical e− beam sizes (σy⁎). The e− beam collides with a target of laser interference fringes, and σy⁎ is derived from the modulation depth of the resulting Compton signal photons measured by a downstream photon detector. By switching between several laser crossing angle modes, it is designed to accommodate a wide range of σy⁎ from 20nm to a few micrometers with better than 10% accuracy. Owing to this ingenious technique, Shintake Monitor11The Shintake Monitor, invented by Dr. T. Shintake, had first been put into practical usage at the FFTB experiment at SLAC [4].[2,3] is the only existing device capable of measuring σy⁎<100nm, and is crucial for verifying ATF2's Goal 1 of focusing σy⁎ down to the design value of 37nm. Shintake Monitor has demonstrated stable σy⁎ measurement with 5–10% stability. Major improvements in hardware and measurement schemes contributed to the suppression of error sources. This paper describes the design concepts and beam time performance of Shintake Monitor, as well as an extensive study of systematic errors with the aim of precisely extracting σy⁎ from the measured modulation.
•Performance of a laser interferometer type beam size monitor.•Measures nm e– beam sizes to demonstrate a final focus system for linear colliders.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2013.11.041</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accelerators ; Beam size ; Beams (radiation) ; Detectors ; Devices ; ILC ; Laser ; Lasers ; Modulation ; Monitors ; Photons ; Shintake Monitor</subject><ispartof>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2014-03, Vol.740, p.131-137</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-5d6a414e24eb4db2cea6c062161252c85d76f9bf1d3e9a65aaa46975e65f27e3</citedby><cites>FETCH-LOGICAL-c333t-5d6a414e24eb4db2cea6c062161252c85d76f9bf1d3e9a65aaa46975e65f27e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168900213015805$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yan, Jacqueline</creatorcontrib><creatorcontrib>Yamaguchi, Yohei</creatorcontrib><creatorcontrib>Kamiya, Yoshio</creatorcontrib><creatorcontrib>Komamiya, Sachio</creatorcontrib><creatorcontrib>Oroku, Masahiro</creatorcontrib><creatorcontrib>Okugi, Toshiyuki</creatorcontrib><creatorcontrib>Terunuma, Nobuhiro</creatorcontrib><creatorcontrib>Kubo, Kiyoshi</creatorcontrib><creatorcontrib>Tauchi, Toshiaki</creatorcontrib><creatorcontrib>Urakawa, Junji</creatorcontrib><title>Measurement of nanometer electron beam sizes with laser interference using Shintake Monitor</title><title>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>The Shintake Monitor is an essential beam tuning device installed at the interaction point (IP) of ATF2 [1], the final focus test beam line of the Accelerator Test Facility (ATF) to measure its nanometer order vertical e− beam sizes (σy⁎). The e− beam collides with a target of laser interference fringes, and σy⁎ is derived from the modulation depth of the resulting Compton signal photons measured by a downstream photon detector. By switching between several laser crossing angle modes, it is designed to accommodate a wide range of σy⁎ from 20nm to a few micrometers with better than 10% accuracy. Owing to this ingenious technique, Shintake Monitor11The Shintake Monitor, invented by Dr. T. Shintake, had first been put into practical usage at the FFTB experiment at SLAC [4].[2,3] is the only existing device capable of measuring σy⁎<100nm, and is crucial for verifying ATF2's Goal 1 of focusing σy⁎ down to the design value of 37nm. Shintake Monitor has demonstrated stable σy⁎ measurement with 5–10% stability. Major improvements in hardware and measurement schemes contributed to the suppression of error sources. This paper describes the design concepts and beam time performance of Shintake Monitor, as well as an extensive study of systematic errors with the aim of precisely extracting σy⁎ from the measured modulation.
•Performance of a laser interferometer type beam size monitor.•Measures nm e– beam sizes to demonstrate a final focus system for linear colliders.</description><subject>Accelerators</subject><subject>Beam size</subject><subject>Beams (radiation)</subject><subject>Detectors</subject><subject>Devices</subject><subject>ILC</subject><subject>Laser</subject><subject>Lasers</subject><subject>Modulation</subject><subject>Monitors</subject><subject>Photons</subject><subject>Shintake Monitor</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5g8siT4K04isaCKL6kVA90YLMe5UJfELnYKgl-PozJzy0l3z3vSPQhdUpJTQuX1Nnd20DkjlOeU5kTQIzSjVcmyuijlMZolqMpqQtgpOotxS1LVZTVDryvQcR9gADdi32GnnR9ghIChBzMG73ADesDR_kDEX3bc4F7HtLYuQR0EcAbwPlr3hl82aajfAa-8s6MP5-ik032Ei78-R-v7u_XiMVs-PzwtbpeZ4ZyPWdFKLagAJqARbcMMaGmIZFRSVjBTFW0pu7rpaMuh1rLQWgtZlwXIomMl8Dm6OpzdBf-xhziqwUYDfa8d-H1UtOCkrrkQMqHsgJrgYwzQqV1I3sK3okRNItVWTSLVJFJRqpLIFLo5hCD98GkhqGjs9HZrQ1KkWm__i_8CE_F91A</recordid><startdate>20140311</startdate><enddate>20140311</enddate><creator>Yan, Jacqueline</creator><creator>Yamaguchi, Yohei</creator><creator>Kamiya, Yoshio</creator><creator>Komamiya, Sachio</creator><creator>Oroku, Masahiro</creator><creator>Okugi, Toshiyuki</creator><creator>Terunuma, Nobuhiro</creator><creator>Kubo, Kiyoshi</creator><creator>Tauchi, Toshiaki</creator><creator>Urakawa, Junji</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140311</creationdate><title>Measurement of nanometer electron beam sizes with laser interference using Shintake Monitor</title><author>Yan, Jacqueline ; Yamaguchi, Yohei ; Kamiya, Yoshio ; Komamiya, Sachio ; Oroku, Masahiro ; Okugi, Toshiyuki ; Terunuma, Nobuhiro ; Kubo, Kiyoshi ; Tauchi, Toshiaki ; Urakawa, Junji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-5d6a414e24eb4db2cea6c062161252c85d76f9bf1d3e9a65aaa46975e65f27e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accelerators</topic><topic>Beam size</topic><topic>Beams (radiation)</topic><topic>Detectors</topic><topic>Devices</topic><topic>ILC</topic><topic>Laser</topic><topic>Lasers</topic><topic>Modulation</topic><topic>Monitors</topic><topic>Photons</topic><topic>Shintake Monitor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Jacqueline</creatorcontrib><creatorcontrib>Yamaguchi, Yohei</creatorcontrib><creatorcontrib>Kamiya, Yoshio</creatorcontrib><creatorcontrib>Komamiya, Sachio</creatorcontrib><creatorcontrib>Oroku, Masahiro</creatorcontrib><creatorcontrib>Okugi, Toshiyuki</creatorcontrib><creatorcontrib>Terunuma, Nobuhiro</creatorcontrib><creatorcontrib>Kubo, Kiyoshi</creatorcontrib><creatorcontrib>Tauchi, Toshiaki</creatorcontrib><creatorcontrib>Urakawa, Junji</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Jacqueline</au><au>Yamaguchi, Yohei</au><au>Kamiya, Yoshio</au><au>Komamiya, Sachio</au><au>Oroku, Masahiro</au><au>Okugi, Toshiyuki</au><au>Terunuma, Nobuhiro</au><au>Kubo, Kiyoshi</au><au>Tauchi, Toshiaki</au><au>Urakawa, Junji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of nanometer electron beam sizes with laser interference using Shintake Monitor</atitle><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2014-03-11</date><risdate>2014</risdate><volume>740</volume><spage>131</spage><epage>137</epage><pages>131-137</pages><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>The Shintake Monitor is an essential beam tuning device installed at the interaction point (IP) of ATF2 [1], the final focus test beam line of the Accelerator Test Facility (ATF) to measure its nanometer order vertical e− beam sizes (σy⁎). The e− beam collides with a target of laser interference fringes, and σy⁎ is derived from the modulation depth of the resulting Compton signal photons measured by a downstream photon detector. By switching between several laser crossing angle modes, it is designed to accommodate a wide range of σy⁎ from 20nm to a few micrometers with better than 10% accuracy. Owing to this ingenious technique, Shintake Monitor11The Shintake Monitor, invented by Dr. T. Shintake, had first been put into practical usage at the FFTB experiment at SLAC [4].[2,3] is the only existing device capable of measuring σy⁎<100nm, and is crucial for verifying ATF2's Goal 1 of focusing σy⁎ down to the design value of 37nm. Shintake Monitor has demonstrated stable σy⁎ measurement with 5–10% stability. Major improvements in hardware and measurement schemes contributed to the suppression of error sources. This paper describes the design concepts and beam time performance of Shintake Monitor, as well as an extensive study of systematic errors with the aim of precisely extracting σy⁎ from the measured modulation.
•Performance of a laser interferometer type beam size monitor.•Measures nm e– beam sizes to demonstrate a final focus system for linear colliders.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2013.11.041</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9002 |
ispartof | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2014-03, Vol.740, p.131-137 |
issn | 0168-9002 1872-9576 |
language | eng |
recordid | cdi_proquest_miscellaneous_1530993446 |
source | Elsevier ScienceDirect Journals |
subjects | Accelerators Beam size Beams (radiation) Detectors Devices ILC Laser Lasers Modulation Monitors Photons Shintake Monitor |
title | Measurement of nanometer electron beam sizes with laser interference using Shintake Monitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20nanometer%20electron%20beam%20sizes%20with%20laser%20interference%20using%20Shintake%20Monitor&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Yan,%20Jacqueline&rft.date=2014-03-11&rft.volume=740&rft.spage=131&rft.epage=137&rft.pages=131-137&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2013.11.041&rft_dat=%3Cproquest_cross%3E1530993446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530993446&rft_id=info:pmid/&rft_els_id=S0168900213015805&rfr_iscdi=true |