Measurement of nanometer electron beam sizes with laser interference using Shintake Monitor

The Shintake Monitor is an essential beam tuning device installed at the interaction point (IP) of ATF2 [1], the final focus test beam line of the Accelerator Test Facility (ATF) to measure its nanometer order vertical e− beam sizes (σy⁎). The e− beam collides with a target of laser interference fri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2014-03, Vol.740, p.131-137
Hauptverfasser: Yan, Jacqueline, Yamaguchi, Yohei, Kamiya, Yoshio, Komamiya, Sachio, Oroku, Masahiro, Okugi, Toshiyuki, Terunuma, Nobuhiro, Kubo, Kiyoshi, Tauchi, Toshiaki, Urakawa, Junji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue
container_start_page 131
container_title Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
container_volume 740
creator Yan, Jacqueline
Yamaguchi, Yohei
Kamiya, Yoshio
Komamiya, Sachio
Oroku, Masahiro
Okugi, Toshiyuki
Terunuma, Nobuhiro
Kubo, Kiyoshi
Tauchi, Toshiaki
Urakawa, Junji
description The Shintake Monitor is an essential beam tuning device installed at the interaction point (IP) of ATF2 [1], the final focus test beam line of the Accelerator Test Facility (ATF) to measure its nanometer order vertical e− beam sizes (σy⁎). The e− beam collides with a target of laser interference fringes, and σy⁎ is derived from the modulation depth of the resulting Compton signal photons measured by a downstream photon detector. By switching between several laser crossing angle modes, it is designed to accommodate a wide range of σy⁎ from 20nm to a few micrometers with better than 10% accuracy. Owing to this ingenious technique, Shintake Monitor11The Shintake Monitor, invented by Dr. T. Shintake, had first been put into practical usage at the FFTB experiment at SLAC [4].[2,3] is the only existing device capable of measuring σy⁎
doi_str_mv 10.1016/j.nima.2013.11.041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530993446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900213015805</els_id><sourcerecordid>1530993446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-5d6a414e24eb4db2cea6c062161252c85d76f9bf1d3e9a65aaa46975e65f27e3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5g8siT4K04isaCKL6kVA90YLMe5UJfELnYKgl-PozJzy0l3z3vSPQhdUpJTQuX1Nnd20DkjlOeU5kTQIzSjVcmyuijlMZolqMpqQtgpOotxS1LVZTVDryvQcR9gADdi32GnnR9ghIChBzMG73ADesDR_kDEX3bc4F7HtLYuQR0EcAbwPlr3hl82aajfAa-8s6MP5-ik032Ei78-R-v7u_XiMVs-PzwtbpeZ4ZyPWdFKLagAJqARbcMMaGmIZFRSVjBTFW0pu7rpaMuh1rLQWgtZlwXIomMl8Dm6OpzdBf-xhziqwUYDfa8d-H1UtOCkrrkQMqHsgJrgYwzQqV1I3sK3okRNItVWTSLVJFJRqpLIFLo5hCD98GkhqGjs9HZrQ1KkWm__i_8CE_F91A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530993446</pqid></control><display><type>article</type><title>Measurement of nanometer electron beam sizes with laser interference using Shintake Monitor</title><source>Elsevier ScienceDirect Journals</source><creator>Yan, Jacqueline ; Yamaguchi, Yohei ; Kamiya, Yoshio ; Komamiya, Sachio ; Oroku, Masahiro ; Okugi, Toshiyuki ; Terunuma, Nobuhiro ; Kubo, Kiyoshi ; Tauchi, Toshiaki ; Urakawa, Junji</creator><creatorcontrib>Yan, Jacqueline ; Yamaguchi, Yohei ; Kamiya, Yoshio ; Komamiya, Sachio ; Oroku, Masahiro ; Okugi, Toshiyuki ; Terunuma, Nobuhiro ; Kubo, Kiyoshi ; Tauchi, Toshiaki ; Urakawa, Junji</creatorcontrib><description>The Shintake Monitor is an essential beam tuning device installed at the interaction point (IP) of ATF2 [1], the final focus test beam line of the Accelerator Test Facility (ATF) to measure its nanometer order vertical e− beam sizes (σy⁎). The e− beam collides with a target of laser interference fringes, and σy⁎ is derived from the modulation depth of the resulting Compton signal photons measured by a downstream photon detector. By switching between several laser crossing angle modes, it is designed to accommodate a wide range of σy⁎ from 20nm to a few micrometers with better than 10% accuracy. Owing to this ingenious technique, Shintake Monitor11The Shintake Monitor, invented by Dr. T. Shintake, had first been put into practical usage at the FFTB experiment at SLAC [4].[2,3] is the only existing device capable of measuring σy⁎&lt;100nm, and is crucial for verifying ATF2's Goal 1 of focusing σy⁎ down to the design value of 37nm. Shintake Monitor has demonstrated stable σy⁎ measurement with 5–10% stability. Major improvements in hardware and measurement schemes contributed to the suppression of error sources. This paper describes the design concepts and beam time performance of Shintake Monitor, as well as an extensive study of systematic errors with the aim of precisely extracting σy⁎ from the measured modulation. •Performance of a laser interferometer type beam size monitor.•Measures nm e– beam sizes to demonstrate a final focus system for linear colliders.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2013.11.041</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accelerators ; Beam size ; Beams (radiation) ; Detectors ; Devices ; ILC ; Laser ; Lasers ; Modulation ; Monitors ; Photons ; Shintake Monitor</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2014-03, Vol.740, p.131-137</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-5d6a414e24eb4db2cea6c062161252c85d76f9bf1d3e9a65aaa46975e65f27e3</citedby><cites>FETCH-LOGICAL-c333t-5d6a414e24eb4db2cea6c062161252c85d76f9bf1d3e9a65aaa46975e65f27e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168900213015805$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yan, Jacqueline</creatorcontrib><creatorcontrib>Yamaguchi, Yohei</creatorcontrib><creatorcontrib>Kamiya, Yoshio</creatorcontrib><creatorcontrib>Komamiya, Sachio</creatorcontrib><creatorcontrib>Oroku, Masahiro</creatorcontrib><creatorcontrib>Okugi, Toshiyuki</creatorcontrib><creatorcontrib>Terunuma, Nobuhiro</creatorcontrib><creatorcontrib>Kubo, Kiyoshi</creatorcontrib><creatorcontrib>Tauchi, Toshiaki</creatorcontrib><creatorcontrib>Urakawa, Junji</creatorcontrib><title>Measurement of nanometer electron beam sizes with laser interference using Shintake Monitor</title><title>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>The Shintake Monitor is an essential beam tuning device installed at the interaction point (IP) of ATF2 [1], the final focus test beam line of the Accelerator Test Facility (ATF) to measure its nanometer order vertical e− beam sizes (σy⁎). The e− beam collides with a target of laser interference fringes, and σy⁎ is derived from the modulation depth of the resulting Compton signal photons measured by a downstream photon detector. By switching between several laser crossing angle modes, it is designed to accommodate a wide range of σy⁎ from 20nm to a few micrometers with better than 10% accuracy. Owing to this ingenious technique, Shintake Monitor11The Shintake Monitor, invented by Dr. T. Shintake, had first been put into practical usage at the FFTB experiment at SLAC [4].[2,3] is the only existing device capable of measuring σy⁎&lt;100nm, and is crucial for verifying ATF2's Goal 1 of focusing σy⁎ down to the design value of 37nm. Shintake Monitor has demonstrated stable σy⁎ measurement with 5–10% stability. Major improvements in hardware and measurement schemes contributed to the suppression of error sources. This paper describes the design concepts and beam time performance of Shintake Monitor, as well as an extensive study of systematic errors with the aim of precisely extracting σy⁎ from the measured modulation. •Performance of a laser interferometer type beam size monitor.•Measures nm e– beam sizes to demonstrate a final focus system for linear colliders.</description><subject>Accelerators</subject><subject>Beam size</subject><subject>Beams (radiation)</subject><subject>Detectors</subject><subject>Devices</subject><subject>ILC</subject><subject>Laser</subject><subject>Lasers</subject><subject>Modulation</subject><subject>Monitors</subject><subject>Photons</subject><subject>Shintake Monitor</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5g8siT4K04isaCKL6kVA90YLMe5UJfELnYKgl-PozJzy0l3z3vSPQhdUpJTQuX1Nnd20DkjlOeU5kTQIzSjVcmyuijlMZolqMpqQtgpOotxS1LVZTVDryvQcR9gADdi32GnnR9ghIChBzMG73ADesDR_kDEX3bc4F7HtLYuQR0EcAbwPlr3hl82aajfAa-8s6MP5-ik032Ei78-R-v7u_XiMVs-PzwtbpeZ4ZyPWdFKLagAJqARbcMMaGmIZFRSVjBTFW0pu7rpaMuh1rLQWgtZlwXIomMl8Dm6OpzdBf-xhziqwUYDfa8d-H1UtOCkrrkQMqHsgJrgYwzQqV1I3sK3okRNItVWTSLVJFJRqpLIFLo5hCD98GkhqGjs9HZrQ1KkWm__i_8CE_F91A</recordid><startdate>20140311</startdate><enddate>20140311</enddate><creator>Yan, Jacqueline</creator><creator>Yamaguchi, Yohei</creator><creator>Kamiya, Yoshio</creator><creator>Komamiya, Sachio</creator><creator>Oroku, Masahiro</creator><creator>Okugi, Toshiyuki</creator><creator>Terunuma, Nobuhiro</creator><creator>Kubo, Kiyoshi</creator><creator>Tauchi, Toshiaki</creator><creator>Urakawa, Junji</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140311</creationdate><title>Measurement of nanometer electron beam sizes with laser interference using Shintake Monitor</title><author>Yan, Jacqueline ; Yamaguchi, Yohei ; Kamiya, Yoshio ; Komamiya, Sachio ; Oroku, Masahiro ; Okugi, Toshiyuki ; Terunuma, Nobuhiro ; Kubo, Kiyoshi ; Tauchi, Toshiaki ; Urakawa, Junji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-5d6a414e24eb4db2cea6c062161252c85d76f9bf1d3e9a65aaa46975e65f27e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accelerators</topic><topic>Beam size</topic><topic>Beams (radiation)</topic><topic>Detectors</topic><topic>Devices</topic><topic>ILC</topic><topic>Laser</topic><topic>Lasers</topic><topic>Modulation</topic><topic>Monitors</topic><topic>Photons</topic><topic>Shintake Monitor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Jacqueline</creatorcontrib><creatorcontrib>Yamaguchi, Yohei</creatorcontrib><creatorcontrib>Kamiya, Yoshio</creatorcontrib><creatorcontrib>Komamiya, Sachio</creatorcontrib><creatorcontrib>Oroku, Masahiro</creatorcontrib><creatorcontrib>Okugi, Toshiyuki</creatorcontrib><creatorcontrib>Terunuma, Nobuhiro</creatorcontrib><creatorcontrib>Kubo, Kiyoshi</creatorcontrib><creatorcontrib>Tauchi, Toshiaki</creatorcontrib><creatorcontrib>Urakawa, Junji</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Jacqueline</au><au>Yamaguchi, Yohei</au><au>Kamiya, Yoshio</au><au>Komamiya, Sachio</au><au>Oroku, Masahiro</au><au>Okugi, Toshiyuki</au><au>Terunuma, Nobuhiro</au><au>Kubo, Kiyoshi</au><au>Tauchi, Toshiaki</au><au>Urakawa, Junji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of nanometer electron beam sizes with laser interference using Shintake Monitor</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2014-03-11</date><risdate>2014</risdate><volume>740</volume><spage>131</spage><epage>137</epage><pages>131-137</pages><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>The Shintake Monitor is an essential beam tuning device installed at the interaction point (IP) of ATF2 [1], the final focus test beam line of the Accelerator Test Facility (ATF) to measure its nanometer order vertical e− beam sizes (σy⁎). The e− beam collides with a target of laser interference fringes, and σy⁎ is derived from the modulation depth of the resulting Compton signal photons measured by a downstream photon detector. By switching between several laser crossing angle modes, it is designed to accommodate a wide range of σy⁎ from 20nm to a few micrometers with better than 10% accuracy. Owing to this ingenious technique, Shintake Monitor11The Shintake Monitor, invented by Dr. T. Shintake, had first been put into practical usage at the FFTB experiment at SLAC [4].[2,3] is the only existing device capable of measuring σy⁎&lt;100nm, and is crucial for verifying ATF2's Goal 1 of focusing σy⁎ down to the design value of 37nm. Shintake Monitor has demonstrated stable σy⁎ measurement with 5–10% stability. Major improvements in hardware and measurement schemes contributed to the suppression of error sources. This paper describes the design concepts and beam time performance of Shintake Monitor, as well as an extensive study of systematic errors with the aim of precisely extracting σy⁎ from the measured modulation. •Performance of a laser interferometer type beam size monitor.•Measures nm e– beam sizes to demonstrate a final focus system for linear colliders.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2013.11.041</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2014-03, Vol.740, p.131-137
issn 0168-9002
1872-9576
language eng
recordid cdi_proquest_miscellaneous_1530993446
source Elsevier ScienceDirect Journals
subjects Accelerators
Beam size
Beams (radiation)
Detectors
Devices
ILC
Laser
Lasers
Modulation
Monitors
Photons
Shintake Monitor
title Measurement of nanometer electron beam sizes with laser interference using Shintake Monitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20nanometer%20electron%20beam%20sizes%20with%20laser%20interference%20using%20Shintake%20Monitor&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Yan,%20Jacqueline&rft.date=2014-03-11&rft.volume=740&rft.spage=131&rft.epage=137&rft.pages=131-137&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2013.11.041&rft_dat=%3Cproquest_cross%3E1530993446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530993446&rft_id=info:pmid/&rft_els_id=S0168900213015805&rfr_iscdi=true