Measurement of nanometer electron beam sizes with laser interference using Shintake Monitor
The Shintake Monitor is an essential beam tuning device installed at the interaction point (IP) of ATF2 [1], the final focus test beam line of the Accelerator Test Facility (ATF) to measure its nanometer order vertical e− beam sizes (σy⁎). The e− beam collides with a target of laser interference fri...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2014-03, Vol.740, p.131-137 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Shintake Monitor is an essential beam tuning device installed at the interaction point (IP) of ATF2 [1], the final focus test beam line of the Accelerator Test Facility (ATF) to measure its nanometer order vertical e− beam sizes (σy⁎). The e− beam collides with a target of laser interference fringes, and σy⁎ is derived from the modulation depth of the resulting Compton signal photons measured by a downstream photon detector. By switching between several laser crossing angle modes, it is designed to accommodate a wide range of σy⁎ from 20nm to a few micrometers with better than 10% accuracy. Owing to this ingenious technique, Shintake Monitor11The Shintake Monitor, invented by Dr. T. Shintake, had first been put into practical usage at the FFTB experiment at SLAC [4].[2,3] is the only existing device capable of measuring σy⁎ |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2013.11.041 |