A generalized multiclass histogram thresholding approach based on mixture modelling

This paper presents a new approach to multi-class thresholding-based segmentation. It considerably improves existing thresholding methods by efficiently modeling non-Gaussian and multi-modal class-conditional distributions using mixtures of generalized Gaussian distributions (MoGG). The proposed app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 2014-03, Vol.47 (3), p.1330-1348
Hauptverfasser: Boulmerka, Aïssa, Saïd Allili, Mohand, Ait-Aoudia, Samy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new approach to multi-class thresholding-based segmentation. It considerably improves existing thresholding methods by efficiently modeling non-Gaussian and multi-modal class-conditional distributions using mixtures of generalized Gaussian distributions (MoGG). The proposed approach seamlessly: (1) extends the standard Otsu's method to arbitrary numbers of thresholds and (2) extends the Kittler and Illingworth minimum error thresholding to non-Gaussian and multi-modal class-conditional data. MoGGs enable efficient representation of heavy-tailed data and multi-modal histograms with flat or sharply shaped peaks. Experiments on synthetic data and real-world image segmentation show the performance of the proposed approach with comparison to recent state-of-the-art techniques. •Generalizing thresholding to multi-modal class segmentation.•Classes are modeled using mixtures of Generalized Gaussian distributions.•Formulation of thresholding based on maximum likelihood estimation.•Application to image foreground segmentation.
ISSN:0031-3203
1873-5142
DOI:10.1016/j.patcog.2013.09.004