Deposition and characterization of energetic thin films
A new approach for depositing thin energetic films is introduced using doctor blade casting. Magnesium (Mg) and manganese dioxide (MnO2) is mixed with a solvent that includes a binder and is blade cast onto a foil substrate. This study investigated the effect of binder chemistry and concentration on...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2014-04, Vol.161 (4), p.1117-1124 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new approach for depositing thin energetic films is introduced using doctor blade casting. Magnesium (Mg) and manganese dioxide (MnO2) is mixed with a solvent that includes a binder and is blade cast onto a foil substrate. This study investigated the effect of binder chemistry and concentration on combustion behavior. The Mg–MnO2 system was studied in the following binder–solvent systems: Polyvinylidene Fluoride (PVDF) – Methyl Pyrrolidone (NMP); Viton® fluoroelastomer (Viton A) – acetone; and, paraffin–xylene. Films were cast onto substrates to approximately 100μm thickness. Calorific output and flame velocity were measured for varying binder concentration. Calorific output increased with increasing binder concentration, to a maximum of 4.0kJ/g, suggesting participation of the binder in the exothermic reaction. Flame velocity decreased with increasing binder concentration, with a maximum of 0.14m/s. Binders are less conductive than metals and metal oxides thereby hindering the energy propagation with increasing binder content. Confined flame propagation tests were also conducted for the NMP/Mg–MnO2–PVDF system, with a maximum recorded flame velocity of 3.5m/s. High velocity imaging shows considerable differences in flame front, which may suggest a transition in propagation mechanism accounting for the observed increase in flame velocity. |
---|---|
ISSN: | 0010-2180 1556-2921 |
DOI: | 10.1016/j.combustflame.2013.10.027 |