Magnetically Decorated Multiwalled Carbon Nanotubes as Dual MRI and SPECT Contrast Agents

Carbon nanotubes (CNTs) are one of the most promising nanomaterials to be used in biomedicine for drug/gene delivery as well as biomedical imaging. This study develops radio‐labeled, iron oxide‐decorated multiwalled CNTs (MWNTs) as dual magnetic resonance (MR) and single photon emission computed tom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2014-04, Vol.24 (13), p.1880-1894
Hauptverfasser: Wang, Julie Tzu-Wen, Cabana, Laura, Bourgognon, Maxime, Kafa, Houmam, Protti, Andrea, Venner, Kerrie, Shah, Ajay M., Sosabowski, Jane K., Mather, Stephen J., Roig, Anna, Ke, Xiaoxing, Van Tendeloo, Gustaaf, de Rosales, Rafael T. M., Tobias, Gerard, Al-Jamal, Khuloud T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon nanotubes (CNTs) are one of the most promising nanomaterials to be used in biomedicine for drug/gene delivery as well as biomedical imaging. This study develops radio‐labeled, iron oxide‐decorated multiwalled CNTs (MWNTs) as dual magnetic resonance (MR) and single photon emission computed tomography (SPECT) contrast agents. Hybrids containing different amounts of iron oxide are synthesized by in situ generation. Physicochemical characterisations reveal the presence of superparamagnetic iron oxide nanoparticles (SPION) granted the magnetic properties of the hybrids. Further comprehensive examinations including high resolution transmission electron microscopy (HRTEM), fast Fourier transform simulations, X‐ray diffraction, and X‐ray photoelectron spectroscopy assure the conformation of prepared SPION as γ‐Fe2O3. High r2 relaxivities are obtained in both phantom and in vivo MRI compared to the clinically approved SPION Endorem. The hybrids are successfully radio labeled with technetium‐99m through a functionalized bisphosphonate and enable SPECT/CT imaging and γ‐scintigraphy to quantitatively analyze the biodistribution in mice. No abnormality is found by histological examination and the presence of SPION and MWNT are identified by Perls stain and Neutral Red stain, respectively. TEM images of liver and spleen tissues show the co‐localization of SPION and MWNTs within the same intracellular vesicles, indicating the in vivo stability of the hybrids after intravenous injection. The results demonstrate the capability of the present SPION–MWNT hybrids as dual MRI and SPECT contrast agents for in vivo use. Dual single photon emission computed tomography (SPECT) and magnetic resonance (MR) imaging of superparamagnetic iron oxide nanoparticle (SPION)–multiwalled carbon nanotube (MWNT) hybrid phantoms. Fe2O3–MWNT hybrids are dispersed in 1% Pluronic F‐127 solution and imaged by MR or SPECT/CT.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201302892