An algorithm of polynomial order for computing the covering dimension of a finite space
Finite topological spaces and the notion of dimension play an important role in digital spaces, computer graphics, image synthesis and image analysis (see, Herman, 1998 [9]; Khalimsky et al., 1990 [10]; Rosenfeld, 1979 [15]). In Georgiou and Megaritis (2011) [7] we gave an algorithm for computing th...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2014-03, Vol.231, p.276-283 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 283 |
---|---|
container_issue | |
container_start_page | 276 |
container_title | Applied mathematics and computation |
container_volume | 231 |
creator | Georgiou, D.N. Megaritis, A.C. |
description | Finite topological spaces and the notion of dimension play an important role in digital spaces, computer graphics, image synthesis and image analysis (see, Herman, 1998 [9]; Khalimsky et al., 1990 [10]; Rosenfeld, 1979 [15]). In Georgiou and Megaritis (2011) [7] we gave an algorithm for computing the covering dimension of a finite space X using the notion of the incidence matrix of X. This algorithm has exponential order. In this paper we give a new algorithm of polynomial order for computing the covering dimension of a finite space. |
doi_str_mv | 10.1016/j.amc.2013.12.185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530972737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300314000241</els_id><sourcerecordid>1530972737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-9dd7b079f880d82a9c5cc5d78ac1b37f2516853642727e003694aab42ce2eac63</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFuOXnbNx26yi6dS_IKCF8VjSJPZNmU3WZNtof_elHr2NLzwPsPMg9A9JSUlVDzuSj2YkhHKS8pK2tQXaEYbyYtaVO0lmhHSioITwq_RTUo7QogUtJqh74XHut-E6KbtgEOHx9AffRic7nGIFiLuQsQmDON-cn6Dpy3kdIB4CtYN4JML_gRq3DnvJsBp1AZu0VWn-wR3f3OOvl6eP5dvxerj9X25WBWGczIVrbVyTWTbNQ2xDdOtqY2prWy0oWsuO1ZT0dRcVEwyCfl80VZarytmgIE2gs_Rw3nvGMPPHtKkBpcM9L32EPZJ0ZqTNrNc5io9V00MKUXo1BjdoONRUaJOEtVOZYnqJFFRprLEzDydGcg_HBxElYwDb8C6CGZSNrh_6F9oN3oz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530972737</pqid></control><display><type>article</type><title>An algorithm of polynomial order for computing the covering dimension of a finite space</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Georgiou, D.N. ; Megaritis, A.C.</creator><creatorcontrib>Georgiou, D.N. ; Megaritis, A.C.</creatorcontrib><description>Finite topological spaces and the notion of dimension play an important role in digital spaces, computer graphics, image synthesis and image analysis (see, Herman, 1998 [9]; Khalimsky et al., 1990 [10]; Rosenfeld, 1979 [15]). In Georgiou and Megaritis (2011) [7] we gave an algorithm for computing the covering dimension of a finite space X using the notion of the incidence matrix of X. This algorithm has exponential order. In this paper we give a new algorithm of polynomial order for computing the covering dimension of a finite space.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2013.12.185</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithm of polynomial order ; Algorithms ; Computation ; Covering ; Covering dimension ; Digital ; Finite space ; Image analysis ; Incidence matrix ; Mathematical analysis ; Polynomials ; Synthesis</subject><ispartof>Applied mathematics and computation, 2014-03, Vol.231, p.276-283</ispartof><rights>2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-9dd7b079f880d82a9c5cc5d78ac1b37f2516853642727e003694aab42ce2eac63</citedby><cites>FETCH-LOGICAL-c330t-9dd7b079f880d82a9c5cc5d78ac1b37f2516853642727e003694aab42ce2eac63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2013.12.185$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Georgiou, D.N.</creatorcontrib><creatorcontrib>Megaritis, A.C.</creatorcontrib><title>An algorithm of polynomial order for computing the covering dimension of a finite space</title><title>Applied mathematics and computation</title><description>Finite topological spaces and the notion of dimension play an important role in digital spaces, computer graphics, image synthesis and image analysis (see, Herman, 1998 [9]; Khalimsky et al., 1990 [10]; Rosenfeld, 1979 [15]). In Georgiou and Megaritis (2011) [7] we gave an algorithm for computing the covering dimension of a finite space X using the notion of the incidence matrix of X. This algorithm has exponential order. In this paper we give a new algorithm of polynomial order for computing the covering dimension of a finite space.</description><subject>Algorithm of polynomial order</subject><subject>Algorithms</subject><subject>Computation</subject><subject>Covering</subject><subject>Covering dimension</subject><subject>Digital</subject><subject>Finite space</subject><subject>Image analysis</subject><subject>Incidence matrix</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Synthesis</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFuOXnbNx26yi6dS_IKCF8VjSJPZNmU3WZNtof_elHr2NLzwPsPMg9A9JSUlVDzuSj2YkhHKS8pK2tQXaEYbyYtaVO0lmhHSioITwq_RTUo7QogUtJqh74XHut-E6KbtgEOHx9AffRic7nGIFiLuQsQmDON-cn6Dpy3kdIB4CtYN4JML_gRq3DnvJsBp1AZu0VWn-wR3f3OOvl6eP5dvxerj9X25WBWGczIVrbVyTWTbNQ2xDdOtqY2prWy0oWsuO1ZT0dRcVEwyCfl80VZarytmgIE2gs_Rw3nvGMPPHtKkBpcM9L32EPZJ0ZqTNrNc5io9V00MKUXo1BjdoONRUaJOEtVOZYnqJFFRprLEzDydGcg_HBxElYwDb8C6CGZSNrh_6F9oN3oz</recordid><startdate>20140315</startdate><enddate>20140315</enddate><creator>Georgiou, D.N.</creator><creator>Megaritis, A.C.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140315</creationdate><title>An algorithm of polynomial order for computing the covering dimension of a finite space</title><author>Georgiou, D.N. ; Megaritis, A.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-9dd7b079f880d82a9c5cc5d78ac1b37f2516853642727e003694aab42ce2eac63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithm of polynomial order</topic><topic>Algorithms</topic><topic>Computation</topic><topic>Covering</topic><topic>Covering dimension</topic><topic>Digital</topic><topic>Finite space</topic><topic>Image analysis</topic><topic>Incidence matrix</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgiou, D.N.</creatorcontrib><creatorcontrib>Megaritis, A.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgiou, D.N.</au><au>Megaritis, A.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An algorithm of polynomial order for computing the covering dimension of a finite space</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-03-15</date><risdate>2014</risdate><volume>231</volume><spage>276</spage><epage>283</epage><pages>276-283</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>Finite topological spaces and the notion of dimension play an important role in digital spaces, computer graphics, image synthesis and image analysis (see, Herman, 1998 [9]; Khalimsky et al., 1990 [10]; Rosenfeld, 1979 [15]). In Georgiou and Megaritis (2011) [7] we gave an algorithm for computing the covering dimension of a finite space X using the notion of the incidence matrix of X. This algorithm has exponential order. In this paper we give a new algorithm of polynomial order for computing the covering dimension of a finite space.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2013.12.185</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2014-03, Vol.231, p.276-283 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1530972737 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithm of polynomial order Algorithms Computation Covering Covering dimension Digital Finite space Image analysis Incidence matrix Mathematical analysis Polynomials Synthesis |
title | An algorithm of polynomial order for computing the covering dimension of a finite space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20algorithm%20of%20polynomial%20order%20for%20computing%20the%20covering%20dimension%20of%20a%20finite%20space&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Georgiou,%20D.N.&rft.date=2014-03-15&rft.volume=231&rft.spage=276&rft.epage=283&rft.pages=276-283&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2013.12.185&rft_dat=%3Cproquest_cross%3E1530972737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530972737&rft_id=info:pmid/&rft_els_id=S0096300314000241&rfr_iscdi=true |