An algorithm of polynomial order for computing the covering dimension of a finite space

Finite topological spaces and the notion of dimension play an important role in digital spaces, computer graphics, image synthesis and image analysis (see, Herman, 1998 [9]; Khalimsky et al., 1990 [10]; Rosenfeld, 1979 [15]). In Georgiou and Megaritis (2011) [7] we gave an algorithm for computing th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-03, Vol.231, p.276-283
Hauptverfasser: Georgiou, D.N., Megaritis, A.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 283
container_issue
container_start_page 276
container_title Applied mathematics and computation
container_volume 231
creator Georgiou, D.N.
Megaritis, A.C.
description Finite topological spaces and the notion of dimension play an important role in digital spaces, computer graphics, image synthesis and image analysis (see, Herman, 1998 [9]; Khalimsky et al., 1990 [10]; Rosenfeld, 1979 [15]). In Georgiou and Megaritis (2011) [7] we gave an algorithm for computing the covering dimension of a finite space X using the notion of the incidence matrix of X. This algorithm has exponential order. In this paper we give a new algorithm of polynomial order for computing the covering dimension of a finite space.
doi_str_mv 10.1016/j.amc.2013.12.185
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530972737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300314000241</els_id><sourcerecordid>1530972737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-9dd7b079f880d82a9c5cc5d78ac1b37f2516853642727e003694aab42ce2eac63</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFuOXnbNx26yi6dS_IKCF8VjSJPZNmU3WZNtof_elHr2NLzwPsPMg9A9JSUlVDzuSj2YkhHKS8pK2tQXaEYbyYtaVO0lmhHSioITwq_RTUo7QogUtJqh74XHut-E6KbtgEOHx9AffRic7nGIFiLuQsQmDON-cn6Dpy3kdIB4CtYN4JML_gRq3DnvJsBp1AZu0VWn-wR3f3OOvl6eP5dvxerj9X25WBWGczIVrbVyTWTbNQ2xDdOtqY2prWy0oWsuO1ZT0dRcVEwyCfl80VZarytmgIE2gs_Rw3nvGMPPHtKkBpcM9L32EPZJ0ZqTNrNc5io9V00MKUXo1BjdoONRUaJOEtVOZYnqJFFRprLEzDydGcg_HBxElYwDb8C6CGZSNrh_6F9oN3oz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530972737</pqid></control><display><type>article</type><title>An algorithm of polynomial order for computing the covering dimension of a finite space</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Georgiou, D.N. ; Megaritis, A.C.</creator><creatorcontrib>Georgiou, D.N. ; Megaritis, A.C.</creatorcontrib><description>Finite topological spaces and the notion of dimension play an important role in digital spaces, computer graphics, image synthesis and image analysis (see, Herman, 1998 [9]; Khalimsky et al., 1990 [10]; Rosenfeld, 1979 [15]). In Georgiou and Megaritis (2011) [7] we gave an algorithm for computing the covering dimension of a finite space X using the notion of the incidence matrix of X. This algorithm has exponential order. In this paper we give a new algorithm of polynomial order for computing the covering dimension of a finite space.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2013.12.185</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithm of polynomial order ; Algorithms ; Computation ; Covering ; Covering dimension ; Digital ; Finite space ; Image analysis ; Incidence matrix ; Mathematical analysis ; Polynomials ; Synthesis</subject><ispartof>Applied mathematics and computation, 2014-03, Vol.231, p.276-283</ispartof><rights>2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-9dd7b079f880d82a9c5cc5d78ac1b37f2516853642727e003694aab42ce2eac63</citedby><cites>FETCH-LOGICAL-c330t-9dd7b079f880d82a9c5cc5d78ac1b37f2516853642727e003694aab42ce2eac63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2013.12.185$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Georgiou, D.N.</creatorcontrib><creatorcontrib>Megaritis, A.C.</creatorcontrib><title>An algorithm of polynomial order for computing the covering dimension of a finite space</title><title>Applied mathematics and computation</title><description>Finite topological spaces and the notion of dimension play an important role in digital spaces, computer graphics, image synthesis and image analysis (see, Herman, 1998 [9]; Khalimsky et al., 1990 [10]; Rosenfeld, 1979 [15]). In Georgiou and Megaritis (2011) [7] we gave an algorithm for computing the covering dimension of a finite space X using the notion of the incidence matrix of X. This algorithm has exponential order. In this paper we give a new algorithm of polynomial order for computing the covering dimension of a finite space.</description><subject>Algorithm of polynomial order</subject><subject>Algorithms</subject><subject>Computation</subject><subject>Covering</subject><subject>Covering dimension</subject><subject>Digital</subject><subject>Finite space</subject><subject>Image analysis</subject><subject>Incidence matrix</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Synthesis</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFuOXnbNx26yi6dS_IKCF8VjSJPZNmU3WZNtof_elHr2NLzwPsPMg9A9JSUlVDzuSj2YkhHKS8pK2tQXaEYbyYtaVO0lmhHSioITwq_RTUo7QogUtJqh74XHut-E6KbtgEOHx9AffRic7nGIFiLuQsQmDON-cn6Dpy3kdIB4CtYN4JML_gRq3DnvJsBp1AZu0VWn-wR3f3OOvl6eP5dvxerj9X25WBWGczIVrbVyTWTbNQ2xDdOtqY2prWy0oWsuO1ZT0dRcVEwyCfl80VZarytmgIE2gs_Rw3nvGMPPHtKkBpcM9L32EPZJ0ZqTNrNc5io9V00MKUXo1BjdoONRUaJOEtVOZYnqJFFRprLEzDydGcg_HBxElYwDb8C6CGZSNrh_6F9oN3oz</recordid><startdate>20140315</startdate><enddate>20140315</enddate><creator>Georgiou, D.N.</creator><creator>Megaritis, A.C.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140315</creationdate><title>An algorithm of polynomial order for computing the covering dimension of a finite space</title><author>Georgiou, D.N. ; Megaritis, A.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-9dd7b079f880d82a9c5cc5d78ac1b37f2516853642727e003694aab42ce2eac63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithm of polynomial order</topic><topic>Algorithms</topic><topic>Computation</topic><topic>Covering</topic><topic>Covering dimension</topic><topic>Digital</topic><topic>Finite space</topic><topic>Image analysis</topic><topic>Incidence matrix</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgiou, D.N.</creatorcontrib><creatorcontrib>Megaritis, A.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgiou, D.N.</au><au>Megaritis, A.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An algorithm of polynomial order for computing the covering dimension of a finite space</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-03-15</date><risdate>2014</risdate><volume>231</volume><spage>276</spage><epage>283</epage><pages>276-283</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>Finite topological spaces and the notion of dimension play an important role in digital spaces, computer graphics, image synthesis and image analysis (see, Herman, 1998 [9]; Khalimsky et al., 1990 [10]; Rosenfeld, 1979 [15]). In Georgiou and Megaritis (2011) [7] we gave an algorithm for computing the covering dimension of a finite space X using the notion of the incidence matrix of X. This algorithm has exponential order. In this paper we give a new algorithm of polynomial order for computing the covering dimension of a finite space.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2013.12.185</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2014-03, Vol.231, p.276-283
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1530972737
source Elsevier ScienceDirect Journals Complete
subjects Algorithm of polynomial order
Algorithms
Computation
Covering
Covering dimension
Digital
Finite space
Image analysis
Incidence matrix
Mathematical analysis
Polynomials
Synthesis
title An algorithm of polynomial order for computing the covering dimension of a finite space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20algorithm%20of%20polynomial%20order%20for%20computing%20the%20covering%20dimension%20of%20a%20finite%20space&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Georgiou,%20D.N.&rft.date=2014-03-15&rft.volume=231&rft.spage=276&rft.epage=283&rft.pages=276-283&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2013.12.185&rft_dat=%3Cproquest_cross%3E1530972737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530972737&rft_id=info:pmid/&rft_els_id=S0096300314000241&rfr_iscdi=true