An algorithm of polynomial order for computing the covering dimension of a finite space
Finite topological spaces and the notion of dimension play an important role in digital spaces, computer graphics, image synthesis and image analysis (see, Herman, 1998 [9]; Khalimsky et al., 1990 [10]; Rosenfeld, 1979 [15]). In Georgiou and Megaritis (2011) [7] we gave an algorithm for computing th...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2014-03, Vol.231, p.276-283 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Finite topological spaces and the notion of dimension play an important role in digital spaces, computer graphics, image synthesis and image analysis (see, Herman, 1998 [9]; Khalimsky et al., 1990 [10]; Rosenfeld, 1979 [15]). In Georgiou and Megaritis (2011) [7] we gave an algorithm for computing the covering dimension of a finite space X using the notion of the incidence matrix of X. This algorithm has exponential order. In this paper we give a new algorithm of polynomial order for computing the covering dimension of a finite space. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2013.12.185 |