An algorithm of polynomial order for computing the covering dimension of a finite space

Finite topological spaces and the notion of dimension play an important role in digital spaces, computer graphics, image synthesis and image analysis (see, Herman, 1998 [9]; Khalimsky et al., 1990 [10]; Rosenfeld, 1979 [15]). In Georgiou and Megaritis (2011) [7] we gave an algorithm for computing th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-03, Vol.231, p.276-283
Hauptverfasser: Georgiou, D.N., Megaritis, A.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Finite topological spaces and the notion of dimension play an important role in digital spaces, computer graphics, image synthesis and image analysis (see, Herman, 1998 [9]; Khalimsky et al., 1990 [10]; Rosenfeld, 1979 [15]). In Georgiou and Megaritis (2011) [7] we gave an algorithm for computing the covering dimension of a finite space X using the notion of the incidence matrix of X. This algorithm has exponential order. In this paper we give a new algorithm of polynomial order for computing the covering dimension of a finite space.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2013.12.185