Tilted Sperner families
Let A be a family of subsets of an n-set such that A does not contain distinct sets A and B with |A∖B|=2|B∖A|. How large can A be? Our aim in this note is to determine the maximum size of such an A. This answers a question of Kalai. We also give some related results and conjectures.
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2014-01, Vol.163, p.194-198 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A be a family of subsets of an n-set such that A does not contain distinct sets A and B with |A∖B|=2|B∖A|. How large can A be? Our aim in this note is to determine the maximum size of such an A. This answers a question of Kalai. We also give some related results and conjectures. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2012.02.024 |