Programmable Macroscopic Supramolecular Assembly through Combined Molecular Recognition and Magnetic Field-Assisted Localization
Macroscopic supramolecular assembly is a promising bottom-up method to construct ordered three-dimensional structures in a programmable way because of its flexible tailoring features. To handle the challenges of precisely aligning the building blocks, we proposed the combination of magnetic field-as...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2014-05, Vol.6 (10), p.7572-7578 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Macroscopic supramolecular assembly is a promising bottom-up method to construct ordered three-dimensional structures in a programmable way because of its flexible tailoring features. To handle the challenges of precisely aligning the building blocks, we proposed the combination of magnetic field-assisted localization for the locomotion of building blocks and host/guest supramolecular recognition for their immobilization. By applying this strategy, we have realized the stepwise construction of microscale glass fibers into an ordered complex pattern. Furthermore, through the introduction of a competitive guest molecule to disassemble the assembled structure, we demonstrated that the interaction between the fibers and the substrate was supramolecular rather than nonselective stickiness. Multivalent theory was used to interpret the mechanism for the interaction process. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/am500910y |