Programmable Macroscopic Supramolecular Assembly through Combined Molecular Recognition and Magnetic Field-Assisted Localization

Macroscopic supramolecular assembly is a promising bottom-up method to construct ordered three-dimensional structures in a programmable way because of its flexible tailoring features. To handle the challenges of precisely aligning the building blocks, we proposed the combination of magnetic field-as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2014-05, Vol.6 (10), p.7572-7578
Hauptverfasser: Cheng, Mengjiao, Liu, Qian, Xian, Yiming, Shi, Feng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Macroscopic supramolecular assembly is a promising bottom-up method to construct ordered three-dimensional structures in a programmable way because of its flexible tailoring features. To handle the challenges of precisely aligning the building blocks, we proposed the combination of magnetic field-assisted localization for the locomotion of building blocks and host/guest supramolecular recognition for their immobilization. By applying this strategy, we have realized the stepwise construction of microscale glass fibers into an ordered complex pattern. Furthermore, through the introduction of a competitive guest molecule to disassemble the assembled structure, we demonstrated that the interaction between the fibers and the substrate was supramolecular rather than nonselective stickiness. Multivalent theory was used to interpret the mechanism for the interaction process.
ISSN:1944-8244
1944-8252
DOI:10.1021/am500910y