Stimulation of protein phosphorylations in frog rod outer segments by protein kinase activators. Suppression of light-induced changes in membrane current and cGMP by protein kinase C activators

Addition of protein kinase C activators to electropermeabilized frog rod photoreceptors enhances the phosphorylation of proteins with molecular masses of 54, 24, 19, 17, 12, and 11 kDa. The latter two correspond to components I and II, which are also phosphorylated by cyclic nucleotide-dependent pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1989-05, Vol.264 (15), p.8857-8864
Hauptverfasser: BINDER, B. M, BREWER, E, BOWNDS, M. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Addition of protein kinase C activators to electropermeabilized frog rod photoreceptors enhances the phosphorylation of proteins with molecular masses of 54, 24, 19, 17, 12, and 11 kDa. The latter two correspond to components I and II, which are also phosphorylated by cyclic nucleotide-dependent protein kinase. Stimulation of phosphorylation by the protein kinase C activator oleoylacetylglycerol (OAG) is half-maximal at 7.7 microM OAG and is reduced by the protein kinase C inhibitor H-7. In contrast with earlier observations, no effects of calcium, calmodulin, or insulin on protein phosphorylations are observed. We find evidence for only three protein kinases in rod outer segments: a protein kinase C-like activity, cAMP-dependent protein kinase, and rhodopsin kinase. With the exception of components I and II, the substrate proteins for each kinase are distinct. Treatment of intact rods with OAG decreases the amplitude of the photoresponse and dark levels of cGMP up to 40%, as well as depressing the light-stimulated decrease in cGMP levels. These effects are observed between 0.1 and 1 microM OAG. The data suggest that OAG-sensitive reactions may modulate pathways that support the light response.
ISSN:0021-9258
1083-351X