Eastern Pacific Warm Pool paleosalinity and climate variability: 0–30 kyr

Multiproxy geologic records of δ18O and Mg/Ca in fossil foraminifera from sediments under the Eastern Pacific Warm Pool (EPWP) region west of Central America document variations in upper ocean temperature, pycnocline strength, and salinity (i.e., net precipitation) over the past 30 kyr. Although evi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Paleoceanography 2006-09, Vol.21 (3), p.PA3008-n/a
Hauptverfasser: Benway, H. M., Mix, A. C., Haley, B. A., Klinkhammer, G. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multiproxy geologic records of δ18O and Mg/Ca in fossil foraminifera from sediments under the Eastern Pacific Warm Pool (EPWP) region west of Central America document variations in upper ocean temperature, pycnocline strength, and salinity (i.e., net precipitation) over the past 30 kyr. Although evident in the paleotemperature record, there is no glacial‐interglacial difference in paleosalinity, suggesting that tropical hydrologic changes do not respond passively to high‐latitude ice sheets and oceans. Millennial variations in paleosalinity with amplitudes as high as ∼4 practical salinity units occur with a dominant period of ∼3–5 ky during the glacial/deglacial interval and ∼1.0–1.5 ky during the Holocene. The amplitude of the EPWP paleosalinity changes greatly exceeds that of published Caribbean and western tropical Pacific paleosalinity records. EPWP paleosalinity changes correspond to millennial‐scale climate changes in the surface and deep Atlantic and the high northern latitudes, with generally higher (lower) paleosalinity during cold (warm) events. In addition to Intertropical Convergence Zone (ITCZ) dynamics, which play an important role in tropical hydrologic variability, changes in Atlantic‐Pacific moisture transport, which is closely linked to ITCZ dynamics, may also contribute to hydrologic variations in the EPWP. Calculations of interbasin salinity average and interbasin salinity contrast between the EPWP and the Caribbean help differentiate long‐term changes in mean ITCZ position and Atlantic‐Pacific moisture transport, respectively.
ISSN:0883-8305
1944-9186
DOI:10.1029/2005PA001208