Diversity of the cultivable human gut microbiome involved in gluten metabolism: isolation of microorganisms with potential interest for coeliac disease
Abstract Gluten, a common component in the human diet, is capable of triggering coeliac disease pathogenesis in genetically predisposed individuals. Although the function of human digestive proteases in gluten proteins is quite well known, the role of intestinal microbiota in the metabolism of prote...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology ecology 2014-05, Vol.88 (2), p.309-319 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Gluten, a common component in the human diet, is capable of triggering coeliac disease pathogenesis in genetically predisposed individuals. Although the function of human digestive proteases in gluten proteins is quite well known, the role of intestinal microbiota in the metabolism of proteins is frequently underestimated. The aim of this study was the isolation and characterisation of the human gut bacteria involved in the metabolism of gluten proteins. Twenty-two human faecal samples were cultured with gluten as the principal nitrogen source, and 144 strains belonging to 35 bacterial species that may be involved in gluten metabolism in the human gut were isolated. Interestingly, 94 strains were able to metabolise gluten, 61 strains showed an extracellular proteolytic activity against gluten proteins, and several strains showed a peptidasic activity towards the 33-mer peptide, an immunogenic peptide in patients with coeliac disease. Most of the strains were classified within the phyla Firmicutes and Actinobacteria, mainly from the genera Lactobacillus, Streptococcus, Staphylococcus, Clostridium and Bifidobacterium. In conclusion, the human intestine exhibits a large variety of bacteria capable of utilising gluten proteins and peptides as nutrients. These bacteria could have an important role in gluten metabolism and could offer promising new treatment modalities for coeliac disease.
Human gut microbiota involved in gluten metabolism are described for the first time. |
---|---|
ISSN: | 0168-6496 1574-6941 |
DOI: | 10.1111/1574-6941.12295 |