Advanced infrared sounder subpixel cloud detection with imagers and its impact on radiance assimilation in NWP

Accurate cloud detection is very important for infrared (IR) radiance assimilation; improved cloud detection could reduce cloud contamination and hence improve the assimilation. Although operational numerical weather prediction (NWP) centers are using IR sounder radiance data for cloud detection, co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2014-03, Vol.41 (5), p.1773-1780
Hauptverfasser: Wang, Pei, Li, Jun, Li, Jinlong, Li, Zhenglong, Schmit, Timothy J., Bai, Wenguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate cloud detection is very important for infrared (IR) radiance assimilation; improved cloud detection could reduce cloud contamination and hence improve the assimilation. Although operational numerical weather prediction (NWP) centers are using IR sounder radiance data for cloud detection, collocated high spatial resolution imager data could help sounder subpixel cloud detection and characterization. IR sounder radiances with improved cloud detection using Atmospheric Infrared Sounder (AIRS)/Moderate Resolution Imaging Spectroradiometer (MODIS) were assimilated for Hurricane Sandy (2012). Forecast experiments were run with Weather Research and Forecasting (WRF) as the forecast model and the Three‐Dimensional Variational Assimilation (3DVAR)‐based Gridpoint Statistical Interpolation (GSI) as the analysis system. Results indicate that forecasts of both hurricane track and intensity are substantially improved when the collocated high spatial resolution MODIS cloud mask is used for AIRS subpixel cloud detection for assimilating radiances. This methodology can be applied to process Crosstrack Infrared Sounder (CRIS)/Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi‐NPOESS Preparatory Project (NPP)/Joint Polar Satellite System (JPSS) and Infrared Atmospheric Sounding Interferometer (IASI)/Advanced Very High Resolution Radiometer (AVHRR) onboard the Metop series for improved radiance assimilation in NWP. Key Points The application of AIRS subpixel cloud detection with 1 km MODIS cloud The analysis fields with assimilation of accurate clear radiances are improved The forecasts are substantially improved with the AIRS subpixel cloud detection
ISSN:0094-8276
1944-8007
DOI:10.1002/2013GL059067