Peptide XIB13 reduces capillary leak in a rodent burn model
Edema due to capillary leak is a generalized and life threatening event in sepsis and major burns for which there is no causal treatment. Local burn wounds are an ideal model to investigate the impact of a new therapeutic agent on edema formation. We aimed to identify peptide sequences of cingulin t...
Gespeichert in:
Veröffentlicht in: | Microvascular research 2014-05, Vol.93, p.98-104 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Edema due to capillary leak is a generalized and life threatening event in sepsis and major burns for which there is no causal treatment. Local burn wounds are an ideal model to investigate the impact of a new therapeutic agent on edema formation. We aimed to identify peptide sequences of cingulin that can attenuate stress-induced endothelial cytoskeleton disarrangement in vitro and which reduce burn-induced edema in vivo.
Cingulin-derived peptides were screened in high content cell culture assays monitoring actin displacement and endothelial cell/cell contacts. The ears of male hairless mice (n=44) were inflicted with full thickness burns using a hot air jet. Mice with and without burn injuries were treated with Xib13 or solvent by continuous intraperitoneal application for 3days. Edema, microcirculation, leukocyte-endothelial interactions and angiogenesis – measured as non-perfused area – were investigated over a 12-day period using intravital fluorescence microscopy.
Xib13 reduced endothelial stress formation and stabilized endothelial tight junctions in cell-cultures. In the burn model, Xib13 improved angiogenesis compared to controls (non-perfused area on day 12: 5.7±1.5% vs. 12.0±2.1%; p |
---|---|
ISSN: | 0026-2862 1095-9319 |
DOI: | 10.1016/j.mvr.2014.04.003 |