Density-functional tight-binding simulations of curvature-controlled layer decoupling and band-gap tuning in bilayer MoS2

Monolayer transition-metal dichalcogenides (TMDCs) display valley-selective circular dichroism due to the presence of time-reversal symmetry and the absence of inversion symmetry, making them promising candidates for valleytronics. In contrast, in bilayer TMDCs both symmetries are present and these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2014-05, Vol.112 (18), p.186802-186802
Hauptverfasser: Koskinen, Pekka, Fampiou, Ioanna, Ramasubramaniam, Ashwin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monolayer transition-metal dichalcogenides (TMDCs) display valley-selective circular dichroism due to the presence of time-reversal symmetry and the absence of inversion symmetry, making them promising candidates for valleytronics. In contrast, in bilayer TMDCs both symmetries are present and these desirable valley-selective properties are lost. Here, by using density-functional tight-binding electronic structure simulations and revised periodic boundary conditions, we show that bending of bilayer MoS2 sheets breaks band degeneracies and localizes states on separate layers due to bending-induced strain gradients across the sheets. We propose a strategy for employing bending deformations in bilayer TMDCs as a simple yet effective means of dynamically and reversibly tuning their band gaps while simultaneously tuning valley-selective physics.
ISSN:1079-7114
DOI:10.1103/PhysRevLett.112.186802