Identification, expression, and regulation of anti-Müllerian hormone type-II receptor in the embryonic chicken gonad

Anti-Müllerian hormone (AMH) signaling is required for proper development of the urogenital system in vertebrates. In male mammals, AMH is responsible for regressing the Müllerian ducts, which otherwise develop into the fallopian tubes, oviducts, and upper vagina of the female reproductive tract. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology of reproduction 2014-05, Vol.90 (5), p.106-106
Hauptverfasser: Cutting, Andrew D, Ayers, Katie, Davidson, Nadia, Oshlack, Alicia, Doran, Tim, Sinclair, Andrew H, Tizard, Mark, Smith, Craig A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anti-Müllerian hormone (AMH) signaling is required for proper development of the urogenital system in vertebrates. In male mammals, AMH is responsible for regressing the Müllerian ducts, which otherwise develop into the fallopian tubes, oviducts, and upper vagina of the female reproductive tract. This role is highly conserved across higher vertebrates. However, AMH is required for testis development in fish species that lack Müllerian ducts, implying that AMH signaling has broader roles in other vertebrates. AMH signals through two serine/threonine kinase receptors. The primary AMH receptor, AMH receptor type-II (AMHR2), recruits the type I receptor, which transduces the signal intracellularly. To enhance our understanding of AMH signaling and the potential role of AMH in gonadal sex differentiation, we cloned chicken AMHR2 cDNA and examined its expression profile during gonadal sex differentiation. AMHR2 is expressed in the gonads and Müllerian ducts of both sexes but is more strongly expressed in males after the onset of gonadal sex differentiation. In the testes, the AMHR2 protein colocalizes with AMH, within Sertoli cells of the testis cords. AMHR2 protein expression is up-regulated in female embryos treated with the estrogen synthesis inhibitor fadrozole. Conversely, knockdown of the key testis gene DMRT1 leads to disruption of AMHR2 expression in the developing seminiferous cords of males. These results indicate that AMHR2 is developmentally regulated during testicular differentiation in the chicken embryo. AMH signaling may be important for gonadal differentiation in addition to Müllerian duct regression in birds.
ISSN:1529-7268
DOI:10.1095/biolreprod.113.116491