Self-Immolative Polymersomes for High-Efficiency Triggered Release and Programmed Enzymatic Reactions

Stimuli-triggered disassembly of block copolymer vesicles or polymersomes has been conventionally achieved via solubility switching of the bilayer-forming block, requiring cooperative changes of most of the repeating units. Herein we report an alternative approach by incorporating hydrophobic blocks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2014-05, Vol.136 (20), p.7492-7497
Hauptverfasser: Liu, Guhuan, Wang, Xiaorui, Hu, Jinming, Zhang, Guoying, Liu, Shiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stimuli-triggered disassembly of block copolymer vesicles or polymersomes has been conventionally achieved via solubility switching of the bilayer-forming block, requiring cooperative changes of most of the repeating units. Herein we report an alternative approach by incorporating hydrophobic blocks exhibiting stimuli-triggered head-to-tail cascade depolymerization features. Amphiphilic block copolymers bearing this motif self-assemble into self-immolative polymersomes (SIPsomes). By modular design of terminal capping moieties, visible light, UV light, and reductive milieu can be utilized to actuate SIPsomes disintegration into water-soluble small molecules and hydrophilic blocks. The design of SIPsomes allows for triggered drug co-release and controllable access toward protons, oxygen, and enzymatic substrates. We also demonstrate programmed (OR-, AND-, and XOR-type logic) enzymatic reactions by integrating SIPsome encapsulation and trigger/capping moiety-selective cascade depolymerization events.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja5030832