The peritoneum—an important factor for pathogenesis and pain generation in endometriosis
Endometriosis (EM) is an oestrogen-dependent disease affecting 10–15 % of women during reproductive age. It is characterised by the presence of endometrial glands, stromal- and smooth muscle-like cells outside of the uterine cavity. Fifty to sixty per cent of women and teenage girls with pelvic pain...
Gespeichert in:
Veröffentlicht in: | Journal of molecular medicine (Berlin, Germany) Germany), 2014-06, Vol.92 (6), p.595-602 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Endometriosis (EM) is an oestrogen-dependent disease affecting 10–15 % of women during reproductive age. It is characterised by the presence of endometrial glands, stromal- and smooth muscle-like cells outside of the uterine cavity. Fifty to sixty per cent of women and teenage girls with pelvic pain suffer from EM. EM causes disability and compromises the quality of life in women and young girls significantly. Pain generation in EM is an intricate interplay of several factors such as the endometriotic lesions themselves and the pain-mediating substances, nerve fibres and cytokine-releasing immune cells such as macrophages. These interactions seem to induce a neurogenic inflammatory process. Recently published data demonstrated an increased peptidergic and decreased noradrenergic nerve fibre density in peritoneal lesions. These data could be substantiated by in vitro analyses demonstrating that the peritoneal fluids of patients suffering from EM induced an enhanced sprouting of sensory neurites from chicken dorsal root ganglia and decreased neurite outgrowth from sympathetic ganglia. These findings might be directly involved in the perpetuation of inflammation and pain. Furthermore, the evidence of EM-associated smooth muscle-like cells seems another important factor in pain generation. The peritoneal endometriotic lesion leads to reactions in the surrounding tissue and, therefore, is larger than generally believed. The identification of EM-associated nerve fibres and smooth muscle-like cells fuel discussions on the mechanisms of pain generation in EM, and may present new targets for innovative treatments. |
---|---|
ISSN: | 0946-2716 1432-1440 |
DOI: | 10.1007/s00109-014-1135-4 |