Active microrheology of driven granular particles
When pulling a particle in a driven granular fluid with constant force Fex, the probe particle approaches a steady-state average velocity v. This velocity and the corresponding friction coefficient of the probe ζ=Fex/v are obtained within a schematic model of mode-coupling theory and compared to res...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2014-04, Vol.89 (4), p.042209-042209, Article 042209 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When pulling a particle in a driven granular fluid with constant force Fex, the probe particle approaches a steady-state average velocity v. This velocity and the corresponding friction coefficient of the probe ζ=Fex/v are obtained within a schematic model of mode-coupling theory and compared to results from event-driven simulations. For small and moderate drag forces, the model describes the simulation results successfully for both the linear as well as the nonlinear region: The linear response regime (constant friction) for small drag forces is followed by shear thinning (decreasing friction) for moderate forces. For large forces, the model demonstrates a subsequent increasing friction in qualitative agreement with the data. The square-root increase of the friction with force found in [Fiege et al., Granul. Matter 14, 247 (2012)] is explained by a simple kinetic theory. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/physreve.89.042209 |