Porphyrin Dyes on TiO2 Surfaces with Different Orientations: A Photophysical, Photovoltaic, and Theoretical Investigation
Porphyrin dyes with a triphenylamino group as an electron donor, para- or meta-benzoic acids as electron acceptors, and hydrogen (H) or mesityl (M) substituents on the meso position as auxiliary groups were synthesized. Their photophysical properties and photovoltaic performance in dye-sensitized so...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2014-05, Vol.118 (19), p.3410-3418 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Porphyrin dyes with a triphenylamino group as an electron donor, para- or meta-benzoic acids as electron acceptors, and hydrogen (H) or mesityl (M) substituents on the meso position as auxiliary groups were synthesized. Their photophysical properties and photovoltaic performance in dye-sensitized solar cells were investigated. All four porphyrins exhibited similar photophysical properties in the solution and dye-loading densities on the surface of TiO2 nanoparticles; however, the p-benzoic acid functionalized porphyrins, p-H(M)PZn, gave better photovoltaic performance than m-benzoic acid functionalized porphyrins, m-H(M)PZn. Theoretical calculations indicated that the electron density on the frontier molecular orbital was more delocalized to p-benzoic acid than to m-benzoic acid. Absorption spectra indicated the stronger H-aggregation in m-H(M)PZn than that in p-H(M)PZn on the surface of TiO2 nanoparticles. The mesityl groups in the meso positions reduced the dye-loading density due to steric hindrance between dyes. As a result, the p-MPZn exhibited the best energy conversion efficiency among the four porphyrins studied. This efficiency was further enhanced when a complementary dye BET was used. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp412609k |