Costimulation improves the killing capability of T cells redirected to tumor cells expressing low levels of CD33: description of a novel modular targeting system
Owing to their clinical success, there is growing interest in novel bispecific antibodies (bsAbs) for retargeting of T cells to tumor cells including for the treatment of acute myeloid leukemia (AML). One potential target for retargeting of T cells to AML blasts is the surface molecule CD33. Here we...
Gespeichert in:
Veröffentlicht in: | Leukemia 2014-01, Vol.28 (1), p.59-69 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Owing to their clinical success, there is growing interest in novel bispecific antibodies (bsAbs) for retargeting of T cells to tumor cells including for the treatment of acute myeloid leukemia (AML). One potential target for retargeting of T cells to AML blasts is the surface molecule CD33. Here we describe a novel modular targeting platform that consists of a universal effector module (EM) and individual target modules (TMs). Both modules can form an immune complex via a peptide epitope. The resulting targeting complex can functionally replace a conventional bsAb. By fusion of a costimulatory domain (for example, the extracellular CD137 ligand domain) to the TM, the targeting complex can even provide a costimulatory signal to the redirected T cells at their side of interaction with the tumor cell. Furthermore, we observed that an efficient killing of tumor cells expressing low levels of the tumor target CD33 becomes critical at low effector-to-target cell ratios but can be improved by costimulation via CD137 using our novel targeting system. |
---|---|
ISSN: | 0887-6924 1476-5551 |
DOI: | 10.1038/leu.2013.243 |