Representing Variability in Subgrid Snow Cover and Snow Depth in a Global Land Model: Offline Validation

Subgrid snow cover is one of the key parameters in global land models since snow cover has large impacts on the surface energy and moisture budgets, and hence the surface temperature. In this study, the Subgrid Snow Distribution (SSNOWD) snow cover parameterization was incorporated into the Minimal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2014-05, Vol.27 (9), p.3318-3330
Hauptverfasser: Nitta, T., Yoshimura, K., Takata, K., O’Ishi, R., Sueyoshi, T., Kanae, S., Oki, T., Abe-Ouchi, A., Liston, G. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Subgrid snow cover is one of the key parameters in global land models since snow cover has large impacts on the surface energy and moisture budgets, and hence the surface temperature. In this study, the Subgrid Snow Distribution (SSNOWD) snow cover parameterization was incorporated into the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO) land surface model. SSNOWD assumes that the subgrid snow water equivalent (SWE) distribution follows a lognormal distribution function, and its parameters are physically derived from geoclimatic information. Two 29-yr global offline simulations, with and without SSNOWD, were performed while forced with the Japanese 25-yr Reanalysis (JRA-25) dataset combined with an observed precipitation dataset. The simulated spatial patterns of mean monthly snow cover fraction were compared with satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) observations. The snow cover fraction was improved by the inclusion of SSNOWD, particularly for the accumulation season and/or regions with relatively small amounts of snowfall; snow cover fraction was typically underestimated in the simulation without SSNOWD. In the Northern Hemisphere, the daily snow-covered area was validated using Interactive Multisensor Snow and Ice Mapping System (IMS) snow analysis datasets. In the simulation with SSNOWD, snow-covered area largely agreed with the IMS snow analysis and the seasonal cycle in the Northern Hemisphere was improved. This was because SSNOWD formulates the snow cover fraction differently for the accumulation season and ablation season, and represents the hysteresis of the snow cover fraction between different seasons. The effects of including SSNOWD on hydrological properties and snow mass were also examined.
ISSN:0894-8755
1520-0442
DOI:10.1175/jcli-d-13-00310.1