Statistical model based 3D shape prediction of postoperative trunks for non-invasive scoliosis surgery planning

Abstract One of the major concerns of scoliosis patients undergoing surgical treatment is the aesthetic aspect of the surgery outcome. It would be useful to predict the postoperative appearance of the patient trunk in the course of a surgery planning process in order to take into account the expecta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2014-05, Vol.48, p.85-93
Hauptverfasser: Assi, K.C, Labelle, H, Cheriet, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract One of the major concerns of scoliosis patients undergoing surgical treatment is the aesthetic aspect of the surgery outcome. It would be useful to predict the postoperative appearance of the patient trunk in the course of a surgery planning process in order to take into account the expectations of the patient. In this paper, we propose to use least squares support vector regression for the prediction of the postoperative trunk 3D shape after spine surgery for adolescent idiopathic scoliosis. Five dimensionality reduction techniques used in conjunction with the support vector machine are compared. The methods are evaluated in terms of their accuracy, based on the leave-one-out cross-validation performed on a database of 141 cases. The results indicate that the 3D shape predictions using a dimensionality reduction obtained by simultaneous decomposition of the predictors and response variables have the best accuracy.
ISSN:0010-4825
1879-0534
DOI:10.1016/j.compbiomed.2014.02.015