Stochastic Simulation Model Comparing Distributions of STEC O157 Faecal Shedding Prevalence Between Cattle Vaccinated With Type III Secreted Protein Vaccines and Non‐Vaccinated Cattle

Pens of cattle with high Escherichia coli O157:H7 (STEC O157) prevalence at harvest may present a greater risk to food safety than pens of lower prevalence. Vaccination of live cattle against STEC O157 has been proposed as an approach to reduce STEC O157 prevalence in live cattle. Our objective was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zoonoses and public health 2014-06, Vol.61 (4), p.283-289
Hauptverfasser: Vogstad, A. R, Moxley, R. A, Erickson, G. E, Klopfenstein, T. J, Smith, D. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pens of cattle with high Escherichia coli O157:H7 (STEC O157) prevalence at harvest may present a greater risk to food safety than pens of lower prevalence. Vaccination of live cattle against STEC O157 has been proposed as an approach to reduce STEC O157 prevalence in live cattle. Our objective was to create a stochastic simulation model to evaluate the effectiveness of pre‐harvest interventions. We used the model to compare STEC O157 prevalence distributions for summer‐ and winter‐fed cattle to summer‐fed cattle immunized with a type III secreted protein (TTSP) vaccine. Model inputs were an estimate of vaccine efficacy, observed frequency distributions for number of animals within a pen, and pen‐level faecal shedding prevalence for summer and winter. Uncertainty about vaccine efficacy was simulated using a log‐normal distribution (mean = 58%, SE = 0.14). Model outputs were distributions of STEC O157 faecal pen prevalence of summer‐fed cattle unvaccinated and vaccinated, and winter‐fed cattle unvaccinated. The simulation was performed 5000 times. Summer faecal prevalence ranged from 0% to 80% (average = 30%). Thirty‐six per cent of summer‐fed pens had STEC O157 prevalence >40%. Winter faecal prevalence ranged from 0% to 60% (average = 10%). Seven per cent of winter‐fed pens had STEC O157 prevalence >40%. Faecal prevalence for summer‐fed pens vaccinated with a 58% efficacious vaccine product ranged from 0% to 52% (average = 13%). Less than one per cent of vaccinated pens had STEC O157 prevalence >40%. In this simulation, vaccination mitigated the risk of STEC O157 faecal shedding to levels comparable to winter, with the major effects being reduced average shedding prevalence, reduced variability in prevalence distribution, and a reduction in the occurrence of the highest prevalence pens. Food safety decision‐makers may find this modelling approach useful for evaluating the value of pre‐harvest interventions.
ISSN:1863-1959
1863-2378
DOI:10.1111/zph.12069