Direct Fabrication of all-Cellulose Nanocomposite from Cellulose Microfibers Using Ionic Liquid-Based Nanowelding

All-cellulose nanocomposite was directly fabricated using nanowelding of cellulose microfibers as a starting material, in 1-butyl-3-methylimidazolium chloride (BMIMCl) as a solvent, for the first time. The average diameter of the reinforcing component (undissolved nanofibrils) in the nanocomposite m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2011-11, Vol.12 (11), p.4080-4085
Hauptverfasser: Yousefi, Hossein, Nishino, Takashi, Faezipour, Mehdi, Ebrahimi, Ghanbar, Shakeri, Alireza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:All-cellulose nanocomposite was directly fabricated using nanowelding of cellulose microfibers as a starting material, in 1-butyl-3-methylimidazolium chloride (BMIMCl) as a solvent, for the first time. The average diameter of the reinforcing component (undissolved nanofibrils) in the nanocomposite made directly from cellulose microfibers (NC-microfiber) was 53 ± 16 nm. Owing to its high mechanical properties (tensile strength of 208 MPa and Young’s modulus of 20 GPa), high transparency (76% at a wavelength of 800 nm), and complete barrier to air and biodegradability, the NC-microfiber is regarded as a high multiperformance material. The NC-microfiber made directly from cellulose microfibers showed similar macro-, micro-, and nanostructures and the same properties as those made from solvent-based welding of ground cellulose nanofibers (NC-nanofiber). Omitting the step of cellulose nanofiber production makes the direct production of all-cellulose nanocomposite from cellulose microfibers easier, shorter, and cheaper than using cellulose nanofibers as starting material. The direct nanowelding of macro/micrometer-sized materials is theorized to be a fundamental approach for making nanocomposites.
ISSN:1525-7797
1526-4602
DOI:10.1021/bm201147a