Microstructure and oxidation properties of 16Cr–5Al–ODS steel prepared by sol–gel and spark plasma sintering methods

The 16Cr–5Al oxide dispersion strengthened (ODS) ferritic steel was fabricated by sol–gel method in combination with hydrogen reduction, mechanical alloying (MA) and spark plasma sintering (SPS) techniques. The phase characterization, microstructure and oxidation resistance of the 16Cr–5Al–ODS steel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2013-01, Vol.432 (1-3), p.198-204
Hauptverfasser: Xia, Y.P., Wang, X.P., Zhuang, Z., Sun, Q.X., Zhang, T., Fang, Q.F., Hao, T., Liu, C.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 16Cr–5Al oxide dispersion strengthened (ODS) ferritic steel was fabricated by sol–gel method in combination with hydrogen reduction, mechanical alloying (MA) and spark plasma sintering (SPS) techniques. The phase characterization, microstructure and oxidation resistance of the 16Cr–5Al–ODS steel were investigated in comparison with the Al free 16Cr–ODS steel. X-ray diffraction (XRD) patterns showed that the Al free and Al added 16Cr–ODS steels exhibited typical ferritic characteristic structure. The microstructure analysis investigated by transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS) revealed that Y–Ti–O complexes with particle size of 10–30nm were formed in the Al free matrix and Y–Al–O complexes with particle size of 20–100nm were formed in the Al contained high-Cr ODS steel matrix. These complexes are homogeneously distributed in the matrices. The fabricated 16Cr–5Al–ODS steel exhibited superior oxidation resistance compared with the Al free 16Cr–ODS steel and the commercial 304 stainless steel owing to the formation of continuous and dense Al2O3 film on the surface.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2012.07.039