Antioxidant and antibacterial activities of Hibiscus Rosa-sinensis Linn flower extracts
Antioxidant and antibacterial potential of different solvent extracts of locally grown Hibiscus rosa-sinensis Linn was evaluated. The antioxidant activity was assessed by estimation of total flavonoids contents, total phenolic contents, DPPH free radical scavenging activity and percentage inhibition...
Gespeichert in:
Veröffentlicht in: | Pakistan journal of pharmaceutical sciences 2014-05, Vol.27 (3), p.469-474 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Antioxidant and antibacterial potential of different solvent extracts of locally grown Hibiscus rosa-sinensis Linn was evaluated. The antioxidant activity was assessed by estimation of total flavonoids contents, total phenolic contents, DPPH free radical scavenging activity and percentage inhibition of linoleic acid oxidation capacity. Agar disc diffusion method was used to assess antibacterial potential of crude extract of H. rosa-sinensis. The yield of the crude extracts (23.21 ± 3.67 and 18.36 ± 2.98% in 80% methanol and ethanol solvents was calculated, respectively. Methanol and ethanol extract of H. rosa-sinensis showed total phenolics 61.45 ± 3.23 and 59.31 ± 4.31 mg/100g as gallic acid equivalent, total flavonoids 53.28 ± 1.93 and 32.25±1.21 mg/100g as catechine equivalent, DPPH free radical scavenging activity 75.46±4.67 and 64.98 ± 2.11% and inhibition of linoleic acid oxidation potential 75.8 ±3.22 and 61.6 ± 2.01% respectively, was measured. Antibacterial study against three human pathogens such as staphlococus sp. Bacillus sp. and Escherichia coli showed growth inhibitory effect in the range of 12.75 ± 1.17 to 16.75 ± 2.10 mm. These results showed H. rosa-sinensis indigenous to Kallar Kahar and its allied areas bear promising medicinal values and could be used for developing herbal medicines to target oxidative stress and infectious diseases. |
---|---|
ISSN: | 1011-601X |