Piper Betel Leaf: A Reservoir of Potential Xenohormetic Nutraceuticals with Cancer-Fighting Properties
Plants contain a much greater diversity of bioactive compounds than any man-made chemical library. Heart-shaped Piper betel leaves are magnificent reservoirs of phenolic compounds with antiproliferative, antimutagenic, antibacterial, and antioxidant properties. Widely consumed in South Asian countri...
Gespeichert in:
Veröffentlicht in: | Cancer prevention research (Philadelphia, Pa.) Pa.), 2014-05, Vol.7 (5), p.477-486 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plants contain a much greater diversity of bioactive compounds than any man-made chemical library. Heart-shaped Piper betel leaves are magnificent reservoirs of phenolic compounds with antiproliferative, antimutagenic, antibacterial, and antioxidant properties. Widely consumed in South Asian countries, the glossy leaf contains a multitude of biophenolics such as hydroxychavicol, eugenol, chavibetol, and piperols. Convincing data underscore the remarkable chemotherapeutic and chemopreventive potential of betel leaves against a variety of cancer types. The leaf constituents modulate an extensive array of signaling molecules such as transcription factors as well as reactive oxygen species (ROS) to control multiple nodes of various cellular proliferation and death pathways. Herein, we provide an overall perspective on the cancer-fighting benefits of the phenolic phytochemicals in betel leaves and a comprehensive overview of the mechanisms responsive to dose-driven ROS-mediated signaling cascades conscripted by bioactive phenolics to confer chemotherapeutic and chemopreventive advantages. Intriguingly, these ROS-triggered responses are contextual and may either elicit a protective xenohormetic antioxidant response to premalignant cells to constitute a chemopreventive effect or generate a curative chemotherapeutic response by pro-oxidatively augmenting the constitutively elevated ROS levels in cancer cells to tip the balance in favor of selective apoptosis induction in cancer cells while sparing normal ones. In conclusion, this review provides an update on how distinct ROS levels exist in normal versus cancer cells and how these levels can be strategically modulated and exploited for therapeutic gains. We emphasize the yet untapped potential of the evergreen vine, betel leaf, for chemopreventive and chemotherapeutic management of cancer. |
---|---|
ISSN: | 1940-6207 1940-6215 |
DOI: | 10.1158/1940-6207.CAPR-13-0355 |