High-Coordinate Gold(I) Complexes with Dithiocarboxylate Ligands

Ferrocene dithiocarboxylate has been introduced into the chemistry of gold(I) and copper(I). First, a modified synthesis of piperidinium ferrocene dithiocarboxylate (1) is reported. Reaction of this reagent with [Au(tht)Cl] in the presence of different phosphines resulted in monomeric, dimeric, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2014-05, Vol.53 (9), p.4491-4499
Hauptverfasser: Kaub, Christoph, Augenstein, Timo, Bauer, Thomas O, Rothe, Elisa, Esmezjan, Lars, Schünemann, Volker, Roesky, Peter W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ferrocene dithiocarboxylate has been introduced into the chemistry of gold(I) and copper(I). First, a modified synthesis of piperidinium ferrocene dithiocarboxylate (1) is reported. Reaction of this reagent with [Au(tht)Cl] in the presence of different phosphines resulted in monomeric, dimeric, and polymeric structures. Although gold(I) is usually two coordinate, mainly three- and four-fold coordinated compounds were obtained by using ferrocene dithiocarboxylate as ligands. The isolated compounds are [(FcCSS)Au(PPh3)2] (2) (FcCSS = ferrocene dithiocarboxylate), [(FcCSS)Au2(dppm)2] (3) (dppm = bis(diphenylphosphino)methane), and [(FcCSS)Au(dppf)] n (4) (dppf = bis(diphenylphosphino)ferrocene) [{(FcCSS)Au}2(dppp)] (5) (dppp = bis(diphenylphosphino)propane). The FcCSS ligand shows a remarkable flexible coordination mode. It coordinates either in a monodentate, a chelating, or in a metal bridging mode. In the four gold(I) complexes 2–5 four different coordination modes of the FcCSS ligand are seen. Attempts to extend this rich coordination chemistry to other coinage metals were only partly successful. [(FcCSS)Cu(PPh3)2] (6) was obtained from the reaction of piperidinium ferrocene dithiocarboxylate with [(Ph3P)3CuCl]. 57Fe–Mössbauer spectroscopy was performed for compounds 2–4. The spectra show isomer shifts and quadrupole splittings that are typical for diamagnetic ferrocenes.
ISSN:0020-1669
1520-510X
DOI:10.1021/ic500151j