Vibrationally Promoted Dissociation of Water on Ni(111)

Water dissociation on transition-metal catalysts is an important step in steam reforming and the water-gas shift reaction. To probe the effect of translational and vibrational activation on this important heterogeneous reaction, we performed state-resolved gas/surface reactivity measurements for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2014-05, Vol.344 (6183), p.504-507
Hauptverfasser: Hundt, P. Morten, Jiang, Bin, van Reijzen, Maarten E., Guo, Hua, Beck, Rainer D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water dissociation on transition-metal catalysts is an important step in steam reforming and the water-gas shift reaction. To probe the effect of translational and vibrational activation on this important heterogeneous reaction, we performed state-resolved gas/surface reactivity measurements for the dissociative chemisorption of D2O on Ni(111), using molecular beam techniques. The reaction occurs via a direct pathway, because both the translational and vibrational energies promote the dissociation. The experimentally measured initial sticking probabilities were used to calibrate a first-principles potential energy surface based on density functional theory. Quantum dynamical calculations on the scaled potential energy surface reproduced the experimental results semiquantitatively. The larger increase of the dissociation probability by vibrational excitation than by translation per unit of energy is consistent with a late barrier along the O-D stretch reaction coordinate.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1251277