Spatiotemporal stimulus properties modulate responses to trajectory changes in a locust looming-sensitive pathway

The lobula giant movement detector (LGMD) and descending contralateral movement detector (DCMD) constitute one motion-sensitive pathway in the locust visual system that is implicated in collision-avoidance behaviors. While this pathway is thought to respond preferentially to objects approaching on a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 2014-05, Vol.111 (9), p.1736-1745
Hauptverfasser: Dick, Paul C, Gray, John R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lobula giant movement detector (LGMD) and descending contralateral movement detector (DCMD) constitute one motion-sensitive pathway in the locust visual system that is implicated in collision-avoidance behaviors. While this pathway is thought to respond preferentially to objects approaching on a direct collision course, emerging studies suggest the firing rate is able to monitor more complicated movements that would occur under natural conditions. While previous studies have compared the response of the DCMD to objects on collision courses that travel at different speeds, velocity has not been manipulated for other simple or compound trajectories. Here we test the possibility that the LGMD/DCMD pathway is capable of responding uniquely to complex aspects of object motion, including translation and trajectory changes at different velocities. We found that the response of the DCMD to translational motion initiated in the caudal visual field was a low-amplitude peak in firing rate that occurred before the object crossed 90° azimuth that was invariant to different object velocities. Direct looms at different velocities resulted in peak firing rates that occurred later in time and with greater amplitude for higher velocities. In response to transitions from translational motion to a collision course, the firing rate change depended on both the location within the visual field and the velocity. These results suggest that this pathway is capable of conveying information about multiple properties of a moving object's trajectory.
ISSN:0022-3077
1522-1598
DOI:10.1152/jn.00499.2013