Morozov's discrepancy principle for Tikhonov-type functionals with nonlinear operators
In this paper we deal with Morozov's discrepancy principle as an a posteriori parameter choice rule for Tikhonov regularization with general convex penalty terms *V for nonlinear inverse problems. It is shown that a regularization parameter *a fulfilling the discprepancy principle exists, whene...
Gespeichert in:
Veröffentlicht in: | Inverse problems 2010-02, Vol.26 (2), p.025001-025001 (17) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 025001 (17) |
---|---|
container_issue | 2 |
container_start_page | 025001 |
container_title | Inverse problems |
container_volume | 26 |
creator | Anzengruber, Stephan W Ramlau, Ronny |
description | In this paper we deal with Morozov's discrepancy principle as an a posteriori parameter choice rule for Tikhonov regularization with general convex penalty terms *V for nonlinear inverse problems. It is shown that a regularization parameter *a fulfilling the discprepancy principle exists, whenever the operator F satisfies some basic conditions, and that for suitable penalty terms the regularized solutions converge to the true solution in the topology induced by *V. It is illustrated that for this parameter choice rule it holds *a -> 0, *dq/*a -> 0 as the noise level *d goes to 0. Finally, we establish convergence rates with respect to the generalized Bregman distance and a numerical example is presented. |
doi_str_mv | 10.1088/0266-5611/26/2/025001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520985710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520985710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-5c5ebb49e676df0c63bb24cc1d0a979438dc56c5fdb341ab93889efdc4ac4abe3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKs_QdiL1INr897doxRfUPFSvYZsNkuj2yQm20r99aa09KIUBsJkvplJPgAuEbxFsCzHEHOeM47QGPMxTimDEB2BASIc5ZxieAwGe-YUnMX4kQBUomIA3l9ccD9uNYpZY6IK2kur1pkPxirjO521LmQz8zl31q3yfu3TzdKq3jgru5h9m36eWWc7Y7UMmfM6yN6FeA5O2lTXF7tzCN4e7meTp3z6-vg8uZvmihakz5liuq5ppXnBmxYqTuoaU6VQA2VVVJSUjWJcsbapCUWyrkhZVrptFJUpak2GYLSd64P7WurYi0X6he46abVbRlFQQiBhGCfy-iCJGIZVyQoEE8q2qAouxqBbkXQsZFgLBMXGuNjYFBubAnOBxdZ46rvarZBRya4NSaWJ-2aMKWKsYIm72XLG-X3135HCN23C4V_88Et-AeSZnk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520985710</pqid></control><display><type>article</type><title>Morozov's discrepancy principle for Tikhonov-type functionals with nonlinear operators</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Anzengruber, Stephan W ; Ramlau, Ronny</creator><creatorcontrib>Anzengruber, Stephan W ; Ramlau, Ronny</creatorcontrib><description>In this paper we deal with Morozov's discrepancy principle as an a posteriori parameter choice rule for Tikhonov regularization with general convex penalty terms *V for nonlinear inverse problems. It is shown that a regularization parameter *a fulfilling the discprepancy principle exists, whenever the operator F satisfies some basic conditions, and that for suitable penalty terms the regularized solutions converge to the true solution in the topology induced by *V. It is illustrated that for this parameter choice rule it holds *a -> 0, *dq/*a -> 0 as the noise level *d goes to 0. Finally, we establish convergence rates with respect to the generalized Bregman distance and a numerical example is presented.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/0266-5611/26/2/025001</identifier><identifier>CODEN: INVPET</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Basic converters ; Convergence ; Exact sciences and technology ; Functionals ; Inverse problems ; Mathematical models ; Noise levels ; Nonlinearity ; Operators ; Physics ; Regularization ; Topology</subject><ispartof>Inverse problems, 2010-02, Vol.26 (2), p.025001-025001 (17)</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-5c5ebb49e676df0c63bb24cc1d0a979438dc56c5fdb341ab93889efdc4ac4abe3</citedby><cites>FETCH-LOGICAL-c473t-5c5ebb49e676df0c63bb24cc1d0a979438dc56c5fdb341ab93889efdc4ac4abe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0266-5611/26/2/025001/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53829,53909</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22415575$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Anzengruber, Stephan W</creatorcontrib><creatorcontrib>Ramlau, Ronny</creatorcontrib><title>Morozov's discrepancy principle for Tikhonov-type functionals with nonlinear operators</title><title>Inverse problems</title><description>In this paper we deal with Morozov's discrepancy principle as an a posteriori parameter choice rule for Tikhonov regularization with general convex penalty terms *V for nonlinear inverse problems. It is shown that a regularization parameter *a fulfilling the discprepancy principle exists, whenever the operator F satisfies some basic conditions, and that for suitable penalty terms the regularized solutions converge to the true solution in the topology induced by *V. It is illustrated that for this parameter choice rule it holds *a -> 0, *dq/*a -> 0 as the noise level *d goes to 0. Finally, we establish convergence rates with respect to the generalized Bregman distance and a numerical example is presented.</description><subject>Basic converters</subject><subject>Convergence</subject><subject>Exact sciences and technology</subject><subject>Functionals</subject><subject>Inverse problems</subject><subject>Mathematical models</subject><subject>Noise levels</subject><subject>Nonlinearity</subject><subject>Operators</subject><subject>Physics</subject><subject>Regularization</subject><subject>Topology</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWKs_QdiL1INr897doxRfUPFSvYZsNkuj2yQm20r99aa09KIUBsJkvplJPgAuEbxFsCzHEHOeM47QGPMxTimDEB2BASIc5ZxieAwGe-YUnMX4kQBUomIA3l9ccD9uNYpZY6IK2kur1pkPxirjO521LmQz8zl31q3yfu3TzdKq3jgru5h9m36eWWc7Y7UMmfM6yN6FeA5O2lTXF7tzCN4e7meTp3z6-vg8uZvmihakz5liuq5ppXnBmxYqTuoaU6VQA2VVVJSUjWJcsbapCUWyrkhZVrptFJUpak2GYLSd64P7WurYi0X6he46abVbRlFQQiBhGCfy-iCJGIZVyQoEE8q2qAouxqBbkXQsZFgLBMXGuNjYFBubAnOBxdZ46rvarZBRya4NSaWJ-2aMKWKsYIm72XLG-X3135HCN23C4V_88Et-AeSZnk8</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Anzengruber, Stephan W</creator><creator>Ramlau, Ronny</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100201</creationdate><title>Morozov's discrepancy principle for Tikhonov-type functionals with nonlinear operators</title><author>Anzengruber, Stephan W ; Ramlau, Ronny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-5c5ebb49e676df0c63bb24cc1d0a979438dc56c5fdb341ab93889efdc4ac4abe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Basic converters</topic><topic>Convergence</topic><topic>Exact sciences and technology</topic><topic>Functionals</topic><topic>Inverse problems</topic><topic>Mathematical models</topic><topic>Noise levels</topic><topic>Nonlinearity</topic><topic>Operators</topic><topic>Physics</topic><topic>Regularization</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anzengruber, Stephan W</creatorcontrib><creatorcontrib>Ramlau, Ronny</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anzengruber, Stephan W</au><au>Ramlau, Ronny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morozov's discrepancy principle for Tikhonov-type functionals with nonlinear operators</atitle><jtitle>Inverse problems</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>26</volume><issue>2</issue><spage>025001</spage><epage>025001 (17)</epage><pages>025001-025001 (17)</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><coden>INVPET</coden><abstract>In this paper we deal with Morozov's discrepancy principle as an a posteriori parameter choice rule for Tikhonov regularization with general convex penalty terms *V for nonlinear inverse problems. It is shown that a regularization parameter *a fulfilling the discprepancy principle exists, whenever the operator F satisfies some basic conditions, and that for suitable penalty terms the regularized solutions converge to the true solution in the topology induced by *V. It is illustrated that for this parameter choice rule it holds *a -> 0, *dq/*a -> 0 as the noise level *d goes to 0. Finally, we establish convergence rates with respect to the generalized Bregman distance and a numerical example is presented.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0266-5611/26/2/025001</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-5611 |
ispartof | Inverse problems, 2010-02, Vol.26 (2), p.025001-025001 (17) |
issn | 0266-5611 1361-6420 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520985710 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Basic converters Convergence Exact sciences and technology Functionals Inverse problems Mathematical models Noise levels Nonlinearity Operators Physics Regularization Topology |
title | Morozov's discrepancy principle for Tikhonov-type functionals with nonlinear operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morozov's%20discrepancy%20principle%20for%20Tikhonov-type%20functionals%20with%20nonlinear%20operators&rft.jtitle=Inverse%20problems&rft.au=Anzengruber,%20Stephan%20W&rft.date=2010-02-01&rft.volume=26&rft.issue=2&rft.spage=025001&rft.epage=025001%20(17)&rft.pages=025001-025001%20(17)&rft.issn=0266-5611&rft.eissn=1361-6420&rft.coden=INVPET&rft_id=info:doi/10.1088/0266-5611/26/2/025001&rft_dat=%3Cproquest_iop_p%3E1520985710%3C/proquest_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520985710&rft_id=info:pmid/&rfr_iscdi=true |