Morozov's discrepancy principle for Tikhonov-type functionals with nonlinear operators
In this paper we deal with Morozov's discrepancy principle as an a posteriori parameter choice rule for Tikhonov regularization with general convex penalty terms *V for nonlinear inverse problems. It is shown that a regularization parameter *a fulfilling the discprepancy principle exists, whene...
Gespeichert in:
Veröffentlicht in: | Inverse problems 2010-02, Vol.26 (2), p.025001-025001 (17) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we deal with Morozov's discrepancy principle as an a posteriori parameter choice rule for Tikhonov regularization with general convex penalty terms *V for nonlinear inverse problems. It is shown that a regularization parameter *a fulfilling the discprepancy principle exists, whenever the operator F satisfies some basic conditions, and that for suitable penalty terms the regularized solutions converge to the true solution in the topology induced by *V. It is illustrated that for this parameter choice rule it holds *a -> 0, *dq/*a -> 0 as the noise level *d goes to 0. Finally, we establish convergence rates with respect to the generalized Bregman distance and a numerical example is presented. |
---|---|
ISSN: | 0266-5611 1361-6420 |
DOI: | 10.1088/0266-5611/26/2/025001 |