Morozov's discrepancy principle for Tikhonov-type functionals with nonlinear operators

In this paper we deal with Morozov's discrepancy principle as an a posteriori parameter choice rule for Tikhonov regularization with general convex penalty terms *V for nonlinear inverse problems. It is shown that a regularization parameter *a fulfilling the discprepancy principle exists, whene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2010-02, Vol.26 (2), p.025001-025001 (17)
Hauptverfasser: Anzengruber, Stephan W, Ramlau, Ronny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we deal with Morozov's discrepancy principle as an a posteriori parameter choice rule for Tikhonov regularization with general convex penalty terms *V for nonlinear inverse problems. It is shown that a regularization parameter *a fulfilling the discprepancy principle exists, whenever the operator F satisfies some basic conditions, and that for suitable penalty terms the regularized solutions converge to the true solution in the topology induced by *V. It is illustrated that for this parameter choice rule it holds *a -> 0, *dq/*a -> 0 as the noise level *d goes to 0. Finally, we establish convergence rates with respect to the generalized Bregman distance and a numerical example is presented.
ISSN:0266-5611
1361-6420
DOI:10.1088/0266-5611/26/2/025001